
NAVAL POSTGRADUATE SCHOOL
Monterey, California

a \-" R AD'd /

DISSERTATION
A MODEL AND ALGORITHMS

FOR
A SOFTWARE EVOLUTION CONTROL SYSTEM

by

Salah El-Din Mohammed Badr

December 1993

Dissertation Supervisor: Prof. Valdis Berzins

Approved for public release; distribution is unlimited. • i I

94-07375 -'-,

Best
Available

Copy

UNCLASSIFIED "
iiCURIrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISIRIBUTIONiAVAILABILiIYOF REPORT

2b DECLASSIFICATION,'DOWNGRADING SCHEDULE Approvcd for public relcasc; distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBE R(Sj

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(it applicable)

Naval Postgraduate School CS Naval Postgraduate School

6c ADDRESS (Cjiy. State. and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Monterey. California 93943-5000 Monterey. California 93943-5000

8a. NAME OF FUNDINGiSPONSORIN G8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc ADDRESS (City. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Secunty Classitcation)

A Model and Algorithms for a Software Evolution Control System

"12 PERSONAL AUTHOR(S)

LTC Salah El-Din Mohammed Badr
13a. TYPE OF REPORT 13b. TIME COVERED " 14 DATE OF REPORT (Yeaw. WMnth. Day) 15 PAGE COUNT

Ph.D. Dissertation From To December 1993 464
16 SUPPLEMENTARY NOIA I ION

The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

17 COSATI CODES 18. SUBJECT TERMS (Conanue on revwse i necessary and idwet by block number)

FIELD GROUP SUB-GROUP software evolution, software evolution steps, configuration graph. version control
configuration management,

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

This dissertation introduces an Evolution Control System (ECS) for the Computer Aided Prototyping System

CAPS. The purpose of the ECS is to automate the scheduling and the assignment of tasks to the software designers

based on management policies and the dependencies in a model of the software configuration. The ECS controls the

software evolution process in an incrementally evolving software system where the steps to be scheduled are only

partially known. Time required, the set of sub-tasks for each step, and the input/output constraints between steps are

all uncertain, and are all subject to change as evolution steps are carried out. The ECS provides computer assistance

for managing such changes and partially automates the control of the design team and the project data.

The ECS manages both the development/prototyping data and the design team through scheduling the software

20 DISTHiBUIION/AVAILABILITIYFABST T 2t. ABSTRACT SECURITY CLASSIFICATION
M) UNCLASSIFIED/UNUMITED [3 SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Valdis Berzins (408) 656-2461 Code CS/Be.

DO FORM 1473, JUN 86 Pr.wous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

tasks and assigning them to members of the design team. The main goals of this system are: 1. Managing the evolution

steps from the moment they are proposed until their completion. 2. Reaching a feasible schedule that meets t6e dead-

line requirements or minimizes the largest amount that a deadline is missed if all deadlines cannot be met and provides

for the earliest possible completion for those steps that either do not have deadlines or have under-estimated deadlines.

3. Maximizing the efforts of software designers by maximizing concurrent assignments. 4. Supporting incremental re-

planning as additional information becomes available. 5, Minimizing wasted design effort due to schedule reorganiza-

tion as well as workers forced to wait for completion of sub-tasks. 6. Insuring system integrity via propagation of

change consequences (induced steps) to maintain the global consistency of the database and providing serializability

of updates. 7. Efficient use of space and time for the design database and scheduling algorithm. 8. Automating the pro-

cess of determining which versions of the subcomponents belong to each version of the entire system. 9. Providing

computer assistance for task tasks and assigning them to members of the design team. The main goals of this system

are: 1. Managing the evolution steps from the moment they are proposed until their completion. 2. Reaching a feasible

schedule that meets the deadline requirements or minimizes the largest amount that a deadline is missed if all deadlines

cannot be met and provides for the earliest possible completion for those steps that either do not have deadlines or have

under-estimated deadlines. 3. Maximizing the efforts of software designers by maximizing concurrent assignments. 4.

Supporting incremental replanning as additional infcrmation becomes available. 5. Minimizing wasted design effort

due to schedule reorganization as well as workers forced to wait for completion of sub-tasks. 6. Insuring system integ-

rity via propagation of change consequences (induced steps) to maintain the global consistency of the database and

providing serializability of updates. 7. Efficient use of space and time for the design database and scheduling algo-

rithm. 8. Automating the process of determining which versions of the subcomponents belong to each version of the

entire system. 9. Providing computer assistance for task

The proposed ECS system represents a management layer between the user interface (supporting two user classes,

managers and designers) and the design database which contains a record of the versions of all software objects and

planned, active and completed evolution steps.

SECURITY CLASSIFICATION OF THIS PAGF

UNCLASSIFIEDii

Approved for public release; distribution is unlimited

A Model and Algorithms for a Software Evolution Control System

by

Salah El-Din Mohammed Badr
LTC, Egyptian Army

B.S.. Military Technical College, Cairo. Egypt 1976
M.S.C.E., Faculty of Engineering, Cairo University, 19XH

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
Dec•mber 1993

Author:

Approved By: Salah El-Din Mohammed Badr.

Luqi Man-Tak Shing
Assoc of Computer Science As6ciate Professor of Computer Science

Assoc-or 7of Cr Sin

"f/ uh-Yng Lee Tarek Abdel-Hamid
Assistant Professor of Computer Science Associate Professor of

Administrative Sciences

A/L'

i on T. Butler Valdis E~rzins
itessor of Electrical and Computer Professor of Computer Science

Engineering Dissertation Supervisor

Approved by :____
Zed, wis, Chairman, Department of Computer Science

Approved by: ,6 5 ~
Richard S. Elster. Dean of Instruction

iii

I

ABSTRACT

This dissertation introduces an Evolution Control System (ECS) for the Computer

Aided Prototyping System CAPS. Tht purpose of the ECS is to automate the scheduling

and the assignment of tasks to the software designers based on management policies and

the dependencies in a model of the software configuration. The ECS controls the software

evolution process in an incrementally evolving software system where the steps to be

scheduled are only partially known. Time required, the set of sub-tasks for each step, and

the input/output constraints between steps are all uncertain, and are all subject to change as

evolution steps are carried out. The ECS provides computer assistance for managing such

changes and partially automates the control of the design team and the project data.

The ECS manages both the development/prototyping data and the design team through

scheduling the software tasks and assigning them to members of the design team. The main

goals of this system are: 1. Managing the evolution steps from the moment they are

proposed until their completion. 2. Reaching a feasible schedule that meets the deadline

requirements or minimizes the largest amount that a deadline is missed if all deadlines

cannot be met and provides for the earliest possible completion for those steps that either

do not have deadlines or have under-estimated deadlines. 3. Maximizing the efforts of

software designers by maximizing concurrent assignments. 4. Supporting incremental

replanning as additional information becomes available. 5. Minimizing wasted design

effort due to schedule reorganization as well as workers forced to wait for completion of

sub-tasks. 6. Insuring system integrity via propagation of change consequences (induced

steps) to maintain the global consistency of the database and providing serializability of

updates. 7. EfM, ci:,,at use of space and time for the design database and scheduling

algorithm. 8. Automating the process of determining which versions of the subcomponents

belong to each version of the entire system. 9. Providing computer assistance for task

iv

I
decomposition during planning using decomposition and dependency information of the

previous version of the software system.

The proposed ECS system represents a management layer between the user interface

(supporting two user classes, managers and designers) and the design database which

ccntains a record of the versions of all software objects and planned, active and completed

evolution steps.

A@ssssion for

3S, '!S" "

DI! C A -

I IL

v

I

TABLE OF CONTENTS

IN T R O D U CTI O N .. I

A . PU R PO SE ... I

B. SOFTWARE EVOLUTION ... 2

C. SOFTWARE EVOLUTION MODELS .. 2

D. PROTO[YPING PROCESS ... 3

E. PROBLEM DEFINITION .. 3

F. CONTRIBUTION OF THIS RESEARCH .. 4

G. ORGANIZATION OF CHAPTERS ... 5

II. SURVEY OF RELEVANT WORK .. 6

A . O V ERV IEW .. 6

B. REVIEW OF FORMAL EVOLUTION MODELS ... 6

C. VERSION CONTROL AND CONFIGURATION MANAGEMENT 8

D. TOOL SUPPORT FOR CONFIGURATION MANAGEMENT AND

COOPERATIVE DESIGN ... 1

E. APPROACHES TO SCHEDULING EVOLUTION STI-PS 13

1. Scheduling Tasks with Precedence Constraints 15

Ill. REQUIREMENTS ANALYSIS ... 18

A. GOALS AND JUSTIFICATIONS .. 18

B. GRAPH MODEL OF SOFTWARE EVOLUTION 19

1. Summary of Modifications to the Original Graph Model 23

vi

a. Version and Variation Num bering ... 24

b. Configuration M anagem ent ... 26

2. States of Evolution Steps .. 29

a. Proposed State .. 29

b. Approved State .. 3 1

c. Scheduled State ... 31

d. A ssigned State .. 32

e. Com pleted State ... 32

f. Abandoned State ... 32

g. Relation to the Original Graph Model .. 33

3. Constraints on State Transitions ... 33

4. Specifying Inputs to the Evolution Steps ... 34

5. Induced Evolution Steps .. 34

6. Induced State Transitions .. 36

7. Applying The General Graph Model to PSDL 36

C. SCH ED ULING M O DEL .. 39

1. Scheduling Constraints .. 39

2. Dynam ics - W hat Can Change ... 41

a. Prim ary Input Changes .. 42

b. Secondary Input Changes ... 42

c. Affected M odules Changes .. 43

vii

d. Precedence, Priority, and Deadline Changes 43

e. Step Decom position .. 44

f. Tim e Estim ate Changes .. 46

g. Designer-Pool Changes .. 47

h. Im pact of Changes .. 47

3. Com putational Feasibility .. 47

D. RESO URCE M O DEL ... 48

E. ECS M ODEL ... 48

1. Context M odel ... 48

2, Event List ... 49

3. State M odel And Related Concepts .. 50

a. Configw ation graph .. 50

b. DesignerPool ... 51

c. Schedule .. 51

4. M anager Interface ... 51

5. Designer Interface .. 52

F. VALIDATION OF ECS SPECIFICATION .. 56

I. A Typical Scenario .. 56

2. Scenario for a M issed Estim ated Finish Time .. 66

3. Scenario for an Early Com m it .. 66

4. Scenario for Changing the Precedence of a Step 67

viii

II

a. Changing Precedence Leading to an Infeasible Schedule 6X

b. Changing Preccdence Leading to Infeasible Schedule and Step

S uspen sion ... 6X

5. Scenario for Changing the Decomposition of an Assigned Task)9

6. Assessment of the Adequacy of the Proposed Command Set 71

7. Questions and Design Decisions ... 72

IV. DESIGN DEVELOPMENT OF ECS ... 74

A. MODELING THE DESIGN DATABASE ... 74

1. Design Database Schema .. 74

a. Type Object .. 75

b. Type Version .. 76

c. Type Component ... 77

d. Type Top..component .. 77

e. Type Step .. 78

f. Type Top-step .. 80

g. Type Designer ... 81

h. Type Assignment .. 82

i. Type Schedule ... 82

j. Type Sequencer .. 83

k. Type Text-Object ... 83

2. Concurrency Control ... 84

B. IMPLEMENTATION CONSIDERATIONS ... 86

ix

I1

Implementing Shared Data for Multiple Users .. $6

a. Shared Data Space .. K6

b. Private W orkspaces .. 87

2. Choice of Languages and Support Systems 88

3. Software Decomposition and Structure 8

C. THE SCHEDULING PROBLEM .. 8x

I. The Scheduling Algorithm .. 89

a. System and Task Model)......

b. A Heuristic Search Scheduling Algorithm 91

c. Algorithm for Adjusting Deadlines ... 97

V. EVALUATION AND VALIDATION ... 104

A. COMPLEXITY ANALYSIS .. 104

B. Simulation Study ... 104

1. Simulation Method ... 105

2. Simulation Results .. 107

C. DEVELOPMENT OF TEST CASES ... 109

1. Determining Change Consequences .. 110

2. Enforcing Change Consequences for Global Consistency 113

3. Incremental Planning ... 115

4. Changes in the Plan .. 118

a. Early Commit of a Step .. 118

x

I

b. Increasing Estim ated D uration of a Step .. 1i20

c. Suspending a Step .. 20

d. Com m itting a Step .. 1............. 122

e. Dropping a Designer .. 124

D. A NA LYSIS O F RESU LTS ... 126

V I. CO NCLUSIO NS 127

A. SU M M A RY .. 127

B. IM PO RTA NCE O F RESEA RCH RESULTS .. 128

C. PRO PO SED EXTENSIO NS .. 12h

VII. A PPEND IC ES ... 130

A. Form al Specifications ... 130

1. State Model and related concepts 130

a. Configuration graph ... 133

b. Designer._Pool .. 137

c. Schedule ... 137

d. Assignm ents .. 138

2. Behavior M odel .. 139

3. M anager Interface .. 150

4. Designer Interface .. 157

5. Type Tim e 158

B. D ESIG N DATA BA SE SCHEM A .. 160

xi

I. Class Step ... 160

2. Class Com ponent ... 226

3. Class Designer ... 265

4. Class Assignment ... 272

5. Class Time .. 284

C. PROG RAM S .. 293

I. The Ada Interface to DDB Package ... 293

2. The Scheduler Package .. 313

3. M ain Progiam s ... 349

D. TEST DATA AND TEST RESULTS .. 415

VIII. LIST OF REFERENCES .. 441

INITIAL DISTRIBUTIO N LIST .. 448

xii

ACKNOWLEDGMENTS

First and foremost, I must acknowledge the unfailing and unconditional support I have

received through it all from my wife, Enas. and my daughters. Hala and Hoda, without

which this work could never have been completed. Their positive attitude and understand-

ing were remarkable as they were essential to my success.

I also wish to express my deepest gratitude to Professor Valdis Berzins whose support.

guidance, knowledge and enthusiasm have been a constant inspiration to me. Special

thanks and deep gratitude are also due to Professor Luqi and Professor Shing for their con-

tinuous support and guidance.

Finally, I wish to thank the other members of my committee for their support and spe-

cial insights; the Computer Science Department staff for their outstanding assistance- and

my fellow Ph.D. students who always provided encouragement and comic relief when

times got hard.

xiii

I. INTRODUCTION

A. PURPOSE

The main objective of this dissertation is to design an evolution control system that can

provide automated assistance for the software evolution process in an uncertain

environment where designer tasks and their properties are always changing. The software

evolution process involves: 1) The software users (customers) who initiate the change

requests whether they are corrective, adaptive, or perfective changes [31, 2) The software

manager or change control board who reviews these change requests and approves/rejects

the changes for implementation, 3) The evolution team that has the task of implementing/

verifying these changes, 4) and finally the software system under evolution that must

preserve its consistency and keep enough information about its evolution history.

We view an Evolution Control System (ECS) as the agent that keeps track of proposed,

ongoing, and completed changes to a software system. It provides automated assistance to

the software evolution manager to help him/her to make the right decisions. It automatically

propagates change consequences by defining the set of possibly affected modules. It also

coordinates and plans change implementation activities within the design team in a way

that supports team work and guarantees system integrity, as well as adapting itself to the

dynamic nature of the evolution process where new changes arrive randomly and current

modifications are themselves subject to change as more information becomes available.

The above definition implies that an ECS has two main functions. The first is to

control and manage evolving software system components (version control and

configuration management, VCCM) and the second is to control and coordinate evolution

team interactions (planning and scheduling software evolution tasks which we refer to as

evolution steps).

The ECS system should manage both human resources and the design database and

provide the help needed by the software manager as well as facilitating the designers' tasks.

This system provides the required algorithms for coordinating and executing the activities

mentioned above as well as the algorithms for reaching and maintaining a feasible

schedule, if one exists, that meets the deadline requirements, reduces/avoids rollbacks, and

insures system integrity in an uncertain environment where the set of evolution steps and

their properties are always changing.

B. SOFTWARE EVOLUTION

Software evolution is the process of extending or modifying the functionality of a

software system [11. Evolution activities may be triggered by changes in user

requirements, planned phased development of a system, or by design changes to eliminate

errors discovered after system delivery (repair). Evolution (maintenance) activities account

for 65% to 75% of total cost of a software system [71 . Software evolution involves change

requests, software systems, evolution steps, customers, managers, and software engineers.

Customers provide change requests, and the corresponding changes are controlled by the

managers of the software system. Approved changes trigger evolution steps that produce

new versions of the software system. Evolution steps are scheduled based on management

policies, and are executed by the software engineers (52].

C. SOFTWARE EVOLUTION MODELS

While detailed software process models are still a subject of research, there are some

general models (paradigms) of software development that can be identified. Some of these

software development models are[7 I]:

1. The waterfall model: This model views the software process as a cascade of a number
of phases such as requirements, specification, design, implementation, testing and
maintenance phase.

2. Exploratory programming: In this approach a working system is rapidly developed,
then repeatedly modified until it reaches an adequate functionality. This model is used
where detailed requirements cannot be specified and where adequacy rather than the
correctness is the main goal of system designers.

3. Prototyping: This approach is similar to the exploratory programming, but the main
goal is establishing the system requirements. This normally followed by an implemen-
tation of the requirements to obtain a production quality system.

4. Formal transformation: In this approach a formal specification of the system is devel-
oped then transformed to a program using correctness preserving transformations.

5. System assembly from reusable components: This approach uses the assumption that
systems are mostly made up of already existing components. This means that the sys-
tem development becomes an assembly rather than a creation process.

2

These models ure normally called software life cycle models to cover the period from

conception to retirement of a given software system. This means that the evolution

activities can follow the same model followed in the development. In some of these models

evolution starts after the release of the developed system, like the waterfall model in which

the evolution activities go through the same cascaded phases of the model. In some other

models like exploratory programming and evolutionary prototyping the current system can

be viewed as a snapshot of an evolving system that evolves from an empty system through

continuous iterations of evolution steps.

D. PROTOTYPING PROCESS

Prototyping is a technique to help establish and validate system requirements.

Prototyping in the software process is practiced in two difierent forms; the first is "throw-

away" prototyping where a prototype is developed with the objective of specifying system

requirements. After the customer is satisfied with the requirements the prototype is

discarded and the system is built from scratch.

The second form is evolutionary prototyping where a prototype evolves via a number

of versions to the final system. Evolutionary prototyping lends itself as an evolution model

where the system is started from its fundamental concepts and is then iteratively modified

in an interactive way with the customer until the system reflects the customer's real needs

[511.

Prototyping techniques include the use of executable specification languages and

reusable software components for rapid prototype construction.

E. PROBLEM DEFINITION

With the complexity of software systems growing every day, more sophisticated

development and maintenance environments are necessary to cope with the evolutionary

nature of software systems. These systems experience iterative modifications through many

versions to cope with the customer's changing and growing needs and the changing and

growing software and hardware technology.

In the context of an evolving system, a software evolution step is used to represent the

activities of analyzing and implementing one change request. These evolution steps are

3

I
typically only partially known. Time required. the set of sub-tasks for each step, and the

input/output constraints among steps are all uncertain, and are all subject to change as

evolution steps are carried out.

Scneduling these evolution steps without taking into account their special nature, as

mentioned above, complicates the management task of achieving the best possible

utilization of human and machine resources. This also may lead to software rollbacks which

waste programming efforts, and affect software consistency due to the lost coordination

between engineers working on different evolution steps that may be related to each other.

An evolution control system must account for all the interacting factors of the

evolution process. These factors, as discussed above, include change requests that are

provided by the customers and lead to the creation of corresponding evolution steps. These

steps are controlled by the manager of the software system. Approved steps are scheduled

for implementation by software designers. The completed steps produce new versions of

the software system. Controlling an evolving system means coordinating these interactions

in a way that preserves system integrity, supports team work via maximizing the number

of concurrent assignments, avoids/reduces rollbacks, planning the required changes (steps)

to meet the management constraints such as deadlines, p.ecedences, and priorities, and

maintaining a record of these change activities for history purposes. Such an evolution

control system should be flexible enough to adapt its scheduling and planning function, in

real-time, to the dynamic changes in current evolution steps as well as the random arrival

of new steps.

F. CONTRIBUTION OF THIS RESEARCH

The main contributions of this dissertation are:

1. Automated support for changes in plan during the execution of the plan.

2. Automatic decision support for planning and team coordination based on design depen-
dencies captured in the configuration model.

3. The enhancement and implementation of a configuration graph model presented in
[521, which is used to keep the evolution history of software systems.

4

I
4. The development of the specification and implementation of the required mechanisms

to manage the evolution steps from the moment a system is proposed until its comple-
tion.

5. The development of an automated version control and configuration management
mechanism which is transparent to the users. This mechanism automatically determines
the version and variation numbers of the software component versions and decides
which component version belongs to which system configuration.

6. The development and implementation of a mechanism for detecting change conse-
quences (determine the components affected by a change) to maintain the global con-
sistency of the design database and provide serializability of updates for each variation.

7. The development and implementation of an on-line scheduling algorithm for finding a
feasible schedule that: meets the deadlines and precedence constraints of all the active
steps or suggests new deadlines for the lowest priority deadlines until a feasible sched-
ule that meets the deadlines of the higher priority steps is reached. This algorithm also:

a. Supports teamwork by concurrently assigning ready steps to available designers.

b. Supports incremental replanning as additional information becomes available.
c. Minimizes wasted design effort due to reorganization of the schedule as well as

workers forced to wait for completion of sub-tasks via the immediate detection
of new dependencies forced by this reorganization and the suspension and
rescheduling of the affected assigned-steps.

G. ORGANIZATION OF CHAPTERS

The rest of this dissertation is organized as follows: Chapter [I provides an overview

of significant related research. Requirement analysis of the proposed system is given in

Chapter III. Chapter IV discusses the design and development of the proposed evolution

control system and our heuristic algorithm for scheduling the evolution steps as well as the

algorithms for the rest of the system functions. The e•,,uation and validation of the

proposed system is presented in Chapter V. Chapter VI includes the concluding remarks,

evaluates the contribution of the dissertation, and provides directions for future work.

5•

II. SURVEY OF RELEVANT WORK

A. OVERVIEW

The main areas in software engineering relevant to ECS are software development/

evolution, version control and configuration management, task planning and scheduling,

and concurrency control. As defined in Chapter 1, the ECS has two main functions. The first

is to control and manage the evolving software system components which is directly related

to the area of version control and configuration management, VCCM. The second is to

control and coordinate the evolution team interactions that include coordinating their

simultaneous access to the changing software components with the required concurrency

control to guarantee system integrity, and coordinating and assigning their tasks in such a

way that maximizes the concurrent assignment and meets management constraints such as

deadlines and precedences.

B. REVIEW OF FORMAL EVOLUTION MODELS

In [52], Luqi presents a graph model for software evolution that introduced the notion

of evolution step as the activities of initiation analysis and implementation of one request

for change in the system under evolution. Luqi models the software system evolution

history as an acyclic bipartite graph G -- IC, S, 1, 0). C nodes represent system components

and S nodes represent evolution steps. The input edges I represent the relation between a

step and the set of system components that have to be examined to produce output

components which are consistent with the rest of the system. The output edges 0 represent

the relation between an evolution step and the components it produces. The states of an

evolution steps as well as the generation of substeps to propagate the change consequences

are also defined. In this dissertation we extend this graph model to include other relations

among system components ("part-of" and "used by") and the "part.of" relationship

between composite step and its substeps. Details of the graph model for software evolution

and its extensions are presented in Chapter I1A as it is the basis for our system.

6

I°I

Implementation

Testing

FIGURE 1. Waterfall model

The waterfall model as depicted in Figure 1 is a software life cycle model that covers

the period from conception to retirement of a given software system. It is clear from Figure

I that the evolution (maintenance) activities follow similar sequence of steps like those in

the development. Unlike the original development cycle, the evolution activities (adaptive,

corrective, and perfective maintenance) must take into consideration the existing system's

requirements, decomposition, constraints, capabilities and performance. The effect of the

changes must be propagated to preserve system consistency. In the mean time, concurrent

changes must be coordinated to avoid rollbacks and wasting engineering effort. Evolution

changes must be planned so that they meet the management constraints such as deadlines,

precedence, and priorities. This indicates the need for an evolution control system that takes

into account the special characteristics of the evolution (maintenance) phase of the software

life cycle process that account for up to 75% of the cost of the software systems [71].

The evolutionary prototyping model, where a prototype evolves via a number of

versions to the final system is shown in Figure 2. Under this evolution model, developers

start evolving the software system from its fundamental concepts, then keep modifying the

system in an interactive way with the customer until the system reflects the customer's real

needs. The importance of an evolution control system in such an interactive, exploratory

system development model is even more obvious than for the waterfall model. In this

model all kinds of changes are going on simultaneously, corrective changes to reflect the

real customer requirements after reviewing the designer's interpretation of portions of the

7

develope-4 requirements. adaptive changes to the rest of the customer's real needs, and

perfective changes to the fundamental concepts already accepted by the customers. The

interactions between these different activities, the coordination among related ones,

propagating the effects of each of these changes to the rest of the developed modules, and

keeping track of which component belongs to which system version are the main goals of

our evolution control system.

Goalss

Frototype

SNoted Deficiencies Prototype

I Yes

Valiodated Requirements

iin Construct h Modularization + ObjectsProduction I.
System

New System

Goals ,Product

Use

FIGURE 2. Rapid Prototyping Model

C. VERSION CONTROL AND CONFIGURATION MANAGEMENT

As indicated in [8 1], version control and configuration management is one of the fields

in software engineering that has received much discussion and many proposals for proper

version and configuration models in different domains, but little has been implemented,

8

II

and much remains to be done in developing techniques for ensuring the consistency of

configurations and space efficient algorithms for version management.

According to 1471 and [26]. representations of the versioning process can be classified

into two main models. The first model is the conventional Version Oriented Model (VOM)

in which a system is divided into modules each of which is versioned independently from

the other modules. To configure a system one has to select a version of each module of the

system. This makes version a primary concept while change is a secondary concept as a

difference between versions. Both SCCS and RCS [751 1761 [781 conform to this model.

The second model is the Change Oriented Model (COM). In this model the functional

change is the primary concept. Versions are identified by a characteristic set of functional

changes. To configure a system in this model, one has to select a ,et of mutually compatible

functional changes. Versions in this model are global, meaning that to examine a module

one has to specify a single version of the system first, then proceed to the required module.

The Aide-de-camp software management system [I I belongs to this model. On the other

hand, in a VOM system, to examine a module one has to select the module first, then

individually select which version of this module is the target.

Reference [261 also defines two more models: The composition model and the long

utansaction model. The composition model is a natural outgrowth of the VOM model. A

configuration in this model consists of a system model and version selection rules. A

system model lists all the components of a system. Version selection rules define which

version is to be selected for each component to compose a configuration rather than

allowing the user to manually pick component versions. Selection rules may be specific,

i.e., repeated application of the selection rules will result in the same component versions

(bound configuration). Otherwise the selection rules are generic (partially bound or

configuration template), i.e., application of the rules at different times may result in a

different bound configuration, e.g., choosing the latest version.

The long transaction model supports the evolution of whole systems as a sequence of

apparently atomic changes, and coordinates the change of software systems by teams of

developers. Developers work primarily with configurat: -.s rather than individual

9

pn

components. A change is performed in a transaction. A specific configuration is selected as

a starting point for changes which implicitly determines the version of the components. The

modifications to this configuration are not visible outside the transaction until the

transaction is committed. Multiple transactions are coordinated via concurrency control

schemes to guarantee no loss of changes. The result of the committing of a transaction is a

new system configuration version either on thc same development path or branch from an

existing development path resulting in a new alternative (variation) development path.

Our work utilizes concepts from both the VOM and long transaction models. Applying

a top level evolution step to a base version of a software system leads to versioning of both

the individual components involved in the change and the entire software system producing

a new configuration version (version of a whole system). In addition our system

automatically coordinates teamwork in such a way that concurrency control is done at a

higher level of abstraction, i.e., the serialization of dependent evolution steps is done by

serializing their assignment to develnpers in the same order and excluding the need for the

traditional locking schemes. Including the evolution steps, with all the data they have about

the change they implement, as nodes in the bipartite evolution history graph facilitates

evolution history tracing.

The three main aspects of organizing software objects defined in [311:

1. evolution: The software objects should be organized in such a way that makes it possi-
ble to view their evolution and origin,

2. membership: grouping software objects in a way that they are easy to find, and

3. composition: putting the appropriate components together for the composition of a new
release,

are similar to the underlying concepts used by our mechanism; the difference is that we use

composit objects to represent the membership organization and to define the composition

organization. This same structure represents configurations of systems and their

subsystems.

Our concept of composite entities and its generalization to fit system configurations is

also similar to that used in PACT [701. Our system uses a computed labeling function and

a single versioning mechanism for automatically versioning individual objects as well as

10

I
configuring a system (as a composite object). Simplifying version control and

configuration management and making it transparent to the user without requiring hider

intervention, as it is the case in our system, are two of the main goals of a good version

control and configuration management system as set forth by Feldman in 1271.

Our system takes care of planning, scheduling, status accounting and auditing of

changes via explicit representations of steps as well as software component versions. Each

step has a unique step number (generated automatically by the system) and is associated

with all the relevant information such as dependent modules, affected modules, who made

the changes and when, and the current status of the step in addition to a description of the

motivation for these changes. This enables the system to answer questions similar to those

mentioned in [491 such as: what changes were made in step #X, what components were

affected by this change, what changes were made to the system after a certain date. and so

on.

D. TOOL SUPPORT FOR CONFIGURATION MANAGEMENT AND

COOPERATIVE DESIGN

According to Kaiser and Perry [371 the main tools that propagate changes among

modules are listed below. However, none of these support the enforced model of

cooperation among programmers necessary for large maintenance/evolution projects or

automatically assign tasks to programmers:

Make: a UNIX tool that rebuilds the entire software system. It invokes the tools

specified in the "Makefile" on changed files and their dependent files. Make is used for

regenerating up-to-date executables after source objects have been changed.

Build: is an extension to make that permit various users to have different views of

target software system. A "viewpath" defines a series of directo-ies to be searched by make

to locate the files listed in the makefile.

Cedar: the Cedar System Modeler uses an advanced version of the Make tool with

version control to invoke the tools on a specific versions of files. This System informs the

il

"Release Master", a programmer, about any syntactic interface errors. The Release Master

is responsible for making work arrangements w;th responsible programmers.

DSEE: the Apollo Domain Software Engineering Environment also uses a Make-like

tool with version control. DSEE also has a monitoring facility that permits programmers

and/or managers to request to be notified when certain modules are changed.

Masterscope: Interlisp's Masterscope tool maintains cross-reference information

between program units automatically. It also approximates change analysis of potential

interference between changes by answering queries about syntactic dependencies among

program units.

SVCE: the Gandalf System Version Control Environment performs incremental

consistency checking across the modules in its database and notifies the programmer of

errors as soon as they occur. The consistency checking is limited to syntactic interface

errors. It supports multiple programmers working in sequence but does not handle

simultaneous changes.

Kaiser and Perry 1371138] 165) also describe Infuse, a system that automates change

management by enforcing programmer cooperation to maintain consistency among a

sequence of scheduled source code changes. Infuse automatically partitions these modules

into a hierarchy of experimental databases. This partitioning may be done according to the

syntactic and/or semantic dependencies among the modules or according to project

management decision. Each experimental database provides a forum for the programmers

assigned to its modules or their managers, and provides also for consistency checking

among those modules (meaning that the interface between the modules must be correct and

that the modules can compile and link successfully). Consistency checking among the

experimental database modules is a pre-condition for merging a database back to its parent

experimental database. Infuse automatically partitions the database into experimental

databases but programmers are assigned to the these databases manually.

In our system tasks and copies of the associated versions of software components are

assigned automatically to designers (programmers) according to their dependencies.

Versions are generated automatically as soon as the work is done. Syntactic and semantic

12

consistency checking for source code can be implemented by associating declarations of

consistency constraints with steps, and triggering the required checking actions as pan of

the commit protocol.

E. APPROACHES TO SCHEDULING EVOLUTION STEPS

A scheduling problem in a real-time system is described by three basic concepts: the

model of the system, the characteristics of the tasks to be scheduled, and the objective of

the scheduling algorithm 167).

First, the system model in our case consists of a set of m designers D = (d1, d2, ... dm).

Those designers are of three aifferent expertise levels flow, medium, high). The

scheduling algorithm determines the order of the execution of tasks by each designer in

such a way that resource, precedence, and timing constraints are met. In our system

resources required by a task other than the designer resources are assumed to be available

as soon as the task is assigned.

Second, the nature of a task, an evolution step in our case, is characterized by its timing

constraints, precedence constraints, and resource requirements. The timing constraints of a

task are generally defined in terms of one or more of the following parameters 1671:

1. The arrival time, Ta: The time at which a task arrives at the system.
2. The earliest start time, Test: The earliest time at wh:zh a task can start execution.

(invariant: Test > Ta).

3. The worst case execution time, Tc: The execution time of a task is always less than this
time.

4. The deadline, Td: The time by which a task must be completed.
The following invariant is always true: 0 :5 Ta :5 Test :5 Td - Tc

While all the tasks and their timing constraints are known beforehand in a static

system, tasks arrive at arbitrary times in a dynamic system, so that the number of tasks to

be scheduled as well as their arrival times are unpredictable.

In many conventional real-time systems a fixed priority is assigned to each task to

reflect the criticalness of the deadlines, and tasks are executed in an order determined by

their priorities. These priorities are adjusted (manually), during the testing period, until the

system designer is convinced that the system works. This approach works only for

13

relatively simple systems, because of the difficulty of determining a good priority

assignment for a system with a large number of tasks by such a test-and-adjust method.

Also, once the priorities are fixed on a system, it is very expensive to modify the priority

assignment [67). Often, priorities are assigned to tasks based only on their importance,

without a complete analysis of how these priority assignments will affect the timing

characteristics of other tasks. Using priorities in this way make it more difficult to satisfy

timing constraints of all the tasks [83].

The relations between the tasks are determined by the precedence constraints among

these tasks. If a task Ti must be completed before another task Tj can be ,tarted then we say

Ti precedes Tj. The precedence graph of a set of tasks is a directed acyclic graph. This

precedence graph is known in advance in static systems. In dynamic systems where new

sets of interrelated tasks arrive arbitrarily, the precedence graph is known only when the

task set arrives.

Third, the objective of an algorithm for scheduling a set of tasks is to determine

whether there exists a schedule for executing the tasks that satisfies the timing, precedence,

and resource constraints, and to calculate such a schedule if one exists.

Task scheduling in real-time systems can be static or dynamic. A static approach

performs the calculation of the schedules for tasks off-line. It requires prior knowledge of

the characteristics of the tasks. On the other hand, a dynamic approach calculates schedules

for tasks "on the fly". Despite the fact that static approaches have low run-time cost, they

are inflexible and cannot respond to a changing environment with unpredictable behavior.

This inflexibility leads to calculating the schedule for the whole system when a new tasks

are added, which is expensive in terms of both time and cost. In contrast, dynamic

approaches involve higher run-time costs, but they are flexible to adapt to environment

changes. A survey of static and dynamic scheduling approaches can be found in [67).

Task scheduling can also be characterized as preemptive and nonpreemptive. A task

is preemptive if its execution can be interrupted by other tasks and resumed afterwards. A

task is nonpreemptive if it must run to completion once it starts.

14

1. Scheduling Tasks with Precedence Constraints

Scheduling tasks with arbitrary precedence constraints and unit computation time

in multiprocessor systems is NP-hard for both the preemptive and nonpreemptive cases

[671 [84). Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both

multiprocessor and uniprocessor systems (671 (831 which excludes the possibility of the

existence of a polynomial time algorithm for solving the problem. Hong and Leung [341

proved that there is no optimal on-line scheduler can exist for task systems that have two

or more distinct deadlines when scheduled on m identical processors where m > I.

Scheduling evolution steps to more than one designer with arbitrary precedence

constraints and arbitrary deadlines is the same problem as that of multiprocessor scheduling

mentioned above which is shown by many researchers to be NP-hard. These negative

results dictate the need for heuristic approaches to solve scheduling problems in such

systems. In the rest of this section we review some of the relevant task scheduling heuristics

used in similar problems and highlight their relevance ,) our work.

In 1721 Stankovic et al. present an 0 (n2) heuristic scheduling algorithm for

scheduling a set of independent processes on a set of identical processors. A task (process)

in this model is characterized by an arrival time T&,, a deadline TD, a worst case

computation time TC, and a set of resource requirements (TR }. Tasks are independent, non

periodic and non-preemptive. The authors stated that scheduling a set of tasks to find a full

feasible schedule is a search problem with a search tree as the search space. The scheduling

algorithm starts at the root of the tree which is an empty schedule. It tries to extend the

schedule by moving to the one of the nodes in the next level of the search tree until it

reaches a full feasible schedule. It is worth noting that, during the expansion of the

schedule, an intermediate node is a partial schedule, while leaf nodes (terminal node)

represent full schedules. It is clear that not every terminal node corresponds to a feasible

schedule. To extend the schedule to a node of the next level of the search tree, the algorithm

uses a boolean function called "strongly-feasible" to determine if the partial schedule is

strongly-feasible or not. A partial schedule is strongly-feasible if all schedules reached by

extending it by each of the remaining tasks are also feasible. This means that if a partial

15

I
feasible schedule is found not to be strongly-feasible because a task T misses its deadline.

then the search should stop on this path since none of the future extensions of task T will

meet its deadline. However, it is possible to backtrack to continue the search in such cases.

After deciding that a partial schedule is strongly-feasible, a heuristic function (H) is used

to direct the search to a plausible path.

This algorithm works as follows: Given a particular heuristic function H. the

algorithm begins with an empty partial schedule. Every step of the algorithm includes (a)

determining if the current partial schedule is strongly-feasible, and if so (b) extending the

current partial schedule by one task. This task is selected by applying the H function to all

the tasks remaining to be scheduled and determining the one with the minimum H value.

Some of the H functions used in [72] are Minimum deadline first(MinD),

Minimum processing time first (MinP), Minimum earliest start time first (MinS),

Minimum laxity firjt (MinL), and the combinations (Min_.D + MinP) and (MinD +

MinS).

In (67], Ramamritham et ai. introduce an O(nk) version of the algorithm

introduced in [72] by considering only k tasks of the remaining tasks to be scheduled for

applying the H function and evaluating the strongly-feasible function.

Both [72] and [67] use a vector data structure for each type of resources to

maintain the earliest available time for each resource of each type. In our algorithm for

scheduling e,,olution steps we extend this algorithm to handle the case where there are

precedence constraints between pairs of steps, and keep a vector of earliest available times

of designers for each expertise level. Details of our algorithm are in Chapter IV.C.

In [821, Xu and Parnas present a pre-run time (static) algorithm to find a feasible

schedule if one exists on a single processor for a set of processes with arbitrary precedence

and exclusion relations and arbitrary deadlines. This algorithm assumes that release times,

deadlines, precedence and exclusion relations are known in advance.

In [84], Xu and Parnas extend their pre-run time algorithm presented in [821

above to find a feasible nonpreemptive schedule whenever one exists on M identical

processors for the same set of processes defined above. In both cases the algorithms use a

16

branch and bound technique that has a search tree where at its root node they use an earliest

start time first strategy to compute a schedule called the "valid initial solution" that satisfies

the release time constraints and all of the initial precedence and exclusion relations. For

each node in the search tree a lower bound on the lateness of any schedule leading from that

node is computed. The algorithm branches from the node that has the least lower bound

among all unexpanded nodes. This operation continues until either a feasible solution is

found or there exist no unexpanded node that has a lower bound less than the least lateness

of all valid initial solutions found so far. This algorithm requires all the constraints to be

known in advance which is not the case in our problem. It also does not provide any

response to changing any of the constraints of the task set or the arrival of new tasks.

17

III. REQUIREMENTS ANALYSIS

A. GOALS AND JUSTIFICATIONS

The main goal of this dissertation is to develop a model and algorithm for an evolution

control system (ECS) for the software evolution/prototyping process. This system provides

automated support for changes in plan during the execution of the plan and automatic

decision support for planning and team coordination based on design dependencies

captured in a configuration model. This ECS is needed to control and coordinate the

overwhelming changes dictated by the evolutionary nature of the software prototyping/

development process. These prototypes experience iterative and exploratory modifications

through large numbers of versions and variations to cope with customers' changing and

growing needs. Coordination is needed to avoid rollbacks, redundancy and inconsistency.

Control is a necessity for managing both the design data (version/configuration control) and

the design team via orchestrating task assignment to support management policies. This

allows the software development team to concentrate on what is needed to fix or improve

system components rather than worrying about managing this enormous amount of data.

The following a&. the main goals for our proposed system:

I. Manage the evolution steps from the moment a system is proposed until its completion.

2. Reach a feasible schedule that meets the deadline requirements of all the active steps or
automatically cancel the lowest priority deadlines until a feasible schedule that meets
the deadlines of the higher priority steps is reached.

3. Support teamwork by identifying the steps that can be scheduled concurrently.

4. Support incremental replanning as additional information becomes available.

5. Minimize wasted design effort due to reorganization of the schedule as well as workers
forced to wait for completion of sub-tasks via the immediate detection of new depen-
dencies forced by this reorganization and the suspension and rescheduling of any of the
affected assigned-steps.

6. Ensure system integrity via propagating change consequences (induced steps) to main-
tain the global consistency of the design database and provide serializability of updates.

7. Provide automated version control and configuration management.

8. Efficient use of space and time for the design database and scheduling algorithm.

18

The first goal is needed to help the prototype manager control the large number of

changes dictated by both the exploratory nature of the prototyping process and customer

feedback, and keep track of which designer is performing which change. The second goal

is crucial for planning to accomplish the required changes. The third and fourth goals are

to cope with the dynamics of the prototyping process where the steps to be scheduled are

only partially known. Tune required, the set of sub-tasks for each step, and the input/output

constraints between steps are all uncertain and subject to change as evolution steps are

carried out. The global consistency of the design database is covered by the fifth goal. The

sixth goal seeks to automate the version control and configuration management in this

dynamic environment to save designers' time and effort. They need not worry about

managing the complicated design database and may concentrate on their main task of

performing the required tasks. The last goal is an implementation requirement for saving

storage space, especially in this exploratory environment where many alternatives are

explored that require much storage space, and to find a time-efficient scheduling algorithm

that does not impact the timing constraints of the scheduled steps.

B. GRAPH MODEL OF SOFTWARE EVOLUTION

Since the main purpose of the ECS is managing software evolution in a rapidly

evolving system, we review a graph model of software evolution that constitutes the

context for building the ECS 152] [58]. The goal of this model is to provide a framework

for integrating software evolution activities with configuration control [52]. The model of

software evolution has two main elements: system components and evolution steps. System

components are immutable versions of software source objects that cannot be reconstructed

automatically. Evolution steps are changes to system components that have the following

properties in the original version of the graph model [52]:

1. A top-level evolution step represents the activities of initiation, analysis, and imple-
mentation of one change request.

2. An evolution step may be either atomic or composite.

3. An atomic step produces at most one new version of a system component. This prop-
erty is no longer true in our model in order to include the cases in which an atomic step
is applied to an originally atomic component that needs to be decomposed according to

19

some design considerations. This decomposition may lead to the production of more
than one component.This modification is illustrated in section C.2.e later in this chap-
ter.

4. The iLputs and outputs of a composite step correspond to the inputs and outputs of its
substeps.

5. The model allows steps that do not lead to the production of new configurations, e.g.
design alternatives that were explored but not included in the configuration repository.

6. Completely automatic transformations are not considered to be steps and are not con-
sidered in this model.

7. The graph model can cover multiple systems which share components, alternative vari-
ations of a single system, and a series of configurations representing the evolution his-
tory of each alternative variation of a system.

8. A scope is associated with each evolution step which identifies the set of systems and
variations to be affected by the step. The scope is used to determine which induced evo-
lution steps are implied by a change request.

The evolution history is modeled as a graph C=[C, S. CE, SE, I, 01. This graph is a

directed acyclic graph (bipartite with respect to the edges I and 0). C and S are the two

kinds of nodes (C: software component nodes, and S: evolution step nodes respectively).

Each node has a unique identifier. C and S nodes alternate in each path that has only I and

0 edges. This represents the evolution history view of the graph. The edges represent the
"part-of" (between a sub-component of a composite component and the composite

component) and "used-by" relations (defined between components to represent the

situation where the semantics or implementation of one component A depends on another

component B; B used_by A) between the software components of a given configuration

(CE C C x C), the "part.of" relation between a substep of a composite step and the

composite step (SE a S x S), the input relation between the system components which

must be examined to produce output components that are consistent with the rest of the

system and the corresponding evolution steps(/ C C x S), and output relation between

evolution steps and the components they produce (0 c S x C). System components are

immutable versions of software source objects that cannot be reconstructed automatically.

An "edge-type" attribute is used to distinguish between the two kinds of edges

representing the relations "used-by" and "partof" defined on the set of edges

CE r C x C. The "used_by" relation can be used for automatic identification of inputs of

20

proposed evolution steps and identification of the induced steps triggered by a proposed

step. A review of the formal definitions of some of the concepts mentioned above, as

defined in the original graph model [521, is introduced below. Some modifications to some

of these definitions and the reasons for them are indicated where it takes place.

a) the set of input components of a step: input (s: S)= I c: CI [c, s] e 1) (1)

b) the set of output components of a step: output (s: S)= Ic: C1 [s, c] e 0) (2)

c) Atomic step: atomic (s: S)= - EXISTS (sl: S:: sl part-of s) (3)

d) one component affects another if both components are identical or if the first is

used in the derivation of the second:

ALL(c1, c2:C:: cI affects c2 o* cI used_by* c2) (4)

where "used-by*" is the reflexive transitive closure of the "used-by" relation defined

above.

e) The output of a composite step includes all the outputs of its sub-steps:

ALL(sl, s2:S, c: C:: sl part of s2 & c e output (sl) % c e output (s2)) (5)

f) Every input to a sub-step either must be affected by some input to the parent step,
or must affect some output of the sub-step

ALL(sl, s2: S, c: C:: sI partof s2 & cI e input (s) 1)

EXISTS (c2: C:: c2 e input (s2) & c2 affects c1) I

c2 e output (s1) & cI usedby c2))) (6)

g) The primary input concept can be formalized by introducing the attributes

object.id, versionid and variationid that apply to versions to yield a unique identifier for

the object and variation associated with each version. Variations represent alternative

choices, which may correspond to different formulations of the requirements in the context

of prototyping, or different kinds of system software (operating system, window manager,

etc.) in the context of product releases. Versions represent the evolution history of a

21

particular variation. An input to a step is primary if and oniy if it is the previous version of

the same object and belongs to the same variation as the output of the step. Same variation

and primary input concepts are defined as follows:

ALL(c1. c2:C:: c I same-variation c2 <=> object-id(cl) = object-id (c2) &

variation-id(cl) = variation-id(c2)) (7)

ALL (s: S, c1: C:: cI primar',input s <=>

c I e input (s) & EXISTS (c2: C:: c2 e output (s) &cI same-variation c2) (8)

The above definition does not consider the inputs that leads to a new version of an

object on a different variation (split) as primary inputs. This is the reason we define an input

to a step to be a primary input if and only if it is the previous version of the same object as

the output of the step. This concept can be formalized as follows.

ALL (s: S, c1: C:: cI primary-input s <=>

ci e input (s) & EXISTS (c2: C:: c2 E output (s) & object-id (c2) = object id (ci)

& version_id (c2) = version_id (cI) + 1)) (9)

h) The scope of a top-level step consists of the components affected by its inputs.

scope(s:S) = {c I:C I EXISTS (c2:C:: c2 e input (top(s)) & c2 affects c i) (10)

i) The set of induced steps are defined as follows.

induced-steps (sl) -{s2:S I EXISTS (cI, c2:C:: cI primary-input sl

& c2 primaryinput s2 & cl affects c2 & current(c2) & c2 e scope (sl))) (0i)

where a component is current if there is no later version of the same variation of the

same object:

ALL(cI:C:: current (ci) : -- EXISTS(c2:C:: cI D+ c2 & ci same_variation c2))

(12)

22

where D÷ is the transitive closure of the relation D = (I u 0) (13)

i. Summary of Modifications to the Original Graph Model

In the previous section we have introduced three basic modifications to the

original graph model [521. First, two sets of edges are added to the original graph model to

represent the "part-of' relation (between a sub-component of a composite component and

the composite component) and "used-by" relation (defined between components to

represent the situation where the semantics or implementation of one component A

depends on another component B; B used-by A) between the components of a given

configuration (CE r C x C), and the "partof" relation between a substep of a composite

step and the composite step (SE a S x S).

The second modification is relaxing the restriction on an atomic step to produce

at most one output component. This modification is needed to account for the cases where

a designer assigned an atomic step (atomic steps are always parts of a top level evolution

step that is used for control purposes and is not assigned to a designer. See section III.B.7

for details) needs to decompose the assigned module which may lead to the production of

more than one output from the step. Since the ECS has control over the components in the

design database, not over each designer's workspace, the designer who does the

decomposition should commit these new modules to the design database where the ECS

can propose a step for each new incomplete subcomponent as parts of the top level

evolution step. The manager reviews the proposed substeps, add the management

constraints, approve these substeps, and then the system automatically schedules these

substeps to the rest of the design team, supporting teamwork.

The third modification is changing the primary input concept to be compatible

with the version control and configuration model defined below. An input to a step is

primary if and only if it is the previous version of the same object as the output of the step,

whether the output version is on the same variation as the input of the step or splitting a new

variation. This modification makes some object versions belong to one or more variations

to help trace the evolution history of each variation to the initial version of each object.

23

a. Version and Variation Numbering

As soon as the input base version of a step is bound, the system assigns the

version and variation number of the output object for the step. The variations are assigned

successive numbers beginning with I for the initial variation. Versions along each variation

are assigned successive numbers starting with I at the root version of the initial variation.

This means that the new version number is the base version number plus one. while the

variation number has two possibilities: the first possibility is to keep the base version's

variation number at the time the step is assigned. This occurs when the base version is the

most recent version on its variation line at the time the step is assigned. The other

possibility is to use the "next" variation number, which is the highest variation number plus

one. This labeling function is the same for both atomic or composite objects (the entire

software system is represented as a composite object).

Let Vbase 1, V base2 be different versions of an object to which an

evolution step is applied, and V-new be the output version produced by the step. Let S be

the primary input set of the step, then the version and variation numbers of the output

version of the step are calculated as follows:

Case size(S) is:

when 0 =>

-- newly created object starts as version 1 on variation I of that object.

version number (Vnew) = I

variation-number (V-new) = 1

when 1 =>

-- normal case

version-number (Vnew) = version_number (Vbasel) + I

if successor (Vbasel) = none then

variationnumber (Vnew) = variation_number (VV_base)

else

variationnumber (Vnew) = highestvariation (object (Vbase)) + 1

24

I
end if

when >I =>

-. merge case

if versionnumber (V.base I) >= versionnumber (Vbase2)

then version-number (V_new) = versionnumber (Vbase I) + I

v = V-base I

else versionnumber (V-new) = version-number (Vbase2) + I

v = V-base2

end if

if successor (v) = none

then variation-number (Vnew) = variation.number (v)

else variationnumber (Vnew) = highest_variation (object (v)) + I

end if

where highestvariation is a function that returns the highest variation exist for an

object.

C7 -S1 V1.2 s2 V1.3 s6 VIA4

FIGURE 3. Variation and version numbering (case i)

25

Cases 0 and 1, of this numbering mechanism are illustrated by an object

evolution graph in Figure 3. VI.1 corresponds to a newly created object, VI.2, VI.3 and

V 1.4 are examples of the creation of versions on the same variation. V2.2 represent the first

split, and V3.3 represents the second split creating the new variations 2 and 3 respectively.

Case >1, is included to make this numbering system compatible with the

ongoing work for automated version merging capabilities under parallel development 1221.

[231. This case is also illustrated by an object evolution graph in Figure 4. V 1.5 is the result

of merging VI1.4 and V2.4. while V3.5 is the result of merging V1.4 and V2.3.

FIGURE 4. Variation and version numbering in case of merge (case >1)

This labelin.g function allows a version to belong to more than one variation

which is a necessary modification to [521 to simplify the process of tracing the development

history of a version and to keep a logical and realistic development history.

b. Configuration Management

As mentioned in Section 3 above, the configurations of the diffeient software

systems/prototypes are represented by a hierarchical structure according to the levels of the

decomposition of each system. This hierarchical structure is a directed acyclic graph with

its nodes representing the different components of the system and the edges representing

the relations among these components which are "part-of" and "usedby". A top level

evolution step producing a new version of one or more of the system componests

eventually leads to producing a new version of the base configuration. This is done by

propagating the versioning process of the modified components up the hierarchy from the

26

I.
levels of the newly created versions to their parents and all the way up to the root of the tree

which represents the system under evolution. It is worth noting that the parent of a modified

component should have a new version because of the change to its children list since this

list should point to the new modified child version. This is formalized as follows:

For i= N down to 2

exists (new-version (component (level(i)))) &

component (level(i)) part-of component (level (i- I)) &

--, exists (new-version (component (i- 1)) -+ new-version (component (i- I))

where N is the number of levels in the configuration graph in which the root is level number

1. This rule is limited to the scope of the step which is the base configuration.

Figure 5 shows an example for building a new configuration as a result of

committing a top level evolution step. This example assumes the use of formal specification

in software evolution that limits the impact of evolution steps (i.e., the implementation of

the composite modules uses its own specification and the specification of its sub-modules,

but not the implementation of the sub-modules). In this example, the primary input of the

step S I is Oe.spec. 1. 1 (the specification of the module Oe) that affects its implementation

and the implementation of its parent module Oe.imp. I. I and Mb.imp. 1. 1 respectively. A

substep is created for each changing component, S i. 1, S 1.2, and S 1.3 for the components

Oe.spec.l.l, Oe.imp.l.l, and Mb.imp.l.1.

Committing these steps after the modifications are done will trigger the

following actions: 1) each substep produces the next version on the same variation line of

its primary input component (assuming no splits), this means the components Oe.spec. 1.2,

Oe.imp. 1.2, and Mb.imp. 1.2 are produced as outputs to the corresponding steps. 2) As a

result of committing the three substeps, the commitment of the top level step S I is

triggered. Committing SI means performing a Depth First Search (DFS) on its input

configuration Sys 1.2 looking for the primary input components of the step, from the leaf

27

nodes and up, if a parent of any of the primary input component does not have a new

version, then a new version is created for it and its composition list is updated io point to

e"4

W; . . .

00 t12

FIGURE 5. Building a new configuration

28

10I

CAI
E6. Gn ol

I
the new version of its modified child. 3) This versioning of the parents is recursively done

for all the parents of the newly created versions in the previous step until the root node is

versioned creating the new configuration Sys. 1.3. The reason for performing DFS on the

primary configuration instead of just building the configuration from the deepest versioned

component all the way up is that each component may belong to more than one

configuration while we need only a new version for a specific onc of them (the primary

input configuration).

2. States of Evolution Steps

The dynamics of the evolution steps are modeled by associating six different

states with each step to express the different activities each step has to undergo during its

lifetime. The state transition diagram in Figure 6 shows the different explicit decisions that

have to be made by the management to cause the transition from one state to the other. It

also shows the automated transitions from the scheduled state to the assigned state and vice

versa (explained in detail in subsections c, and d below). By controlling the states of the

evolution steps, the evolution manager exercises direct control over both software

evolution/development and the resulting software configurations. The following are the

definitions of those states and the corresponding actions that cause the transition from one

state to the other. These states are similar to those presented in [52] except that a new state

called "assigned" has been added for the reasons explained below.

am Proposed State

In this state a proposed evolution step is subjected to both cost and benefit

analysis. This analysis also includes identifying the software objects comprising the input

set of the step. An evolution step is created when it is proposed, which means that the initial

status of a newly created step is "proposed". The createstep command takes as input a

primary-input component and a base version of the whole system configuration and returns

a unique step number, a set of components affected by the change to the primary-input

component and a set of secondary input components (the components usedby the

primary-input component). A "proposed" step is generally added to the configuration

graph as an isolated step node that does not have any input, output or part-of edges (except

29

I
when an old version is used that has existing specific reference). This is because the

primary and secondary input attributes are mostly generic inputs (objectjid and

variation_id only).

suspend

create approvesceue f -

SProposed Approved Scheduled

ab~~onassg uspend

ab an abardn a on a ssg upn

abandon

0 Final state iAbandoned Assigned

Automatic transition c

Scommand transition

_fCompleted

FIGURE 6. Evolution step's state transition diagram

Inputs to an evolution step can be specified by references to either a generic

object or a specific object version. Generic object references are commonly used to denote

the current version of the object. A generic object reference consists of an identifier for the

object and an identifier for a variation of that object [521. Generic object references can be

used only while the step is in the "proposed", "approved" or "scheduled" states, and must

be bound to specific versions before the step can enter the "assigned" state. If the binding

is not specified manually, it defaults to the version from the previous version of the entire

prototype with respect to the serialization order of the top level evolution step. The version

30

bindings of a composite step are inherited by its sub-steps to ensure consistency. Specific

object references are usually used to define inputs to steps in cases when an older version

is used, which often coincide with the creation of new variations.

If a specific reference is to be used, it has to be entered into the system by the

software manager using the editstep command before issuing the schedule-step

command. This is because it is used for the calculation of the serialization order among the

steps to be scheduled.

b. Approved State

In this state the implementation of the step has been approved but not

scheduled yet and the input set of the step is not bound to particular versions. Approval of

a proposed step by the management and the Change Control Board advances its status to

"approved", and triggers the decomposition process to create an atomic sub-step for each

primary or affected component of the step. These sub-steps inherit the status of their super-

step which is "approved" in this case, and are added to the configuration graph with a

part-of edge between each sub-step and its super step.

It is also in this state that the substeps are augmented with attributes that

include the estimated duration of each sub-step and management scheduling constraints

such as precedence, deadline, and priority. The "approved" state can also be reached from

both the "scheduled" and "assigned" states using the "suspend-step" command to suspend

work on a step due to budget cuts or other management reasons.

c. Scheduled State

In this state the implementation has been scheduled and the step is not yet

assigned to a designer. When a designer is available the step is assigned to him/her and its

status is automatically advanced to "assigned". The "scheduled" state is reached from the
"approved" state via the command "schedule-step" that indicates that the management

constraints are complete and enables the scheduling and job assignment mechanisms. The

scheduling mechanism produces an updated schedule containing the newly scheduled step.

A schedule specifies the expected starting and completion times for the step. The scheduled

state can also be reached from the assigned state when a step is suspended by the system

31

JI
because of a new dependeicy imposed due to adding a new step to the schedule or because

of modified scheduling constraints due to editing an existing step. This leads to

rescheduling of the suspended step.

d Assigned State

In this state the step is assigned to the scheduled designer, all inputs are bound

to particular versions, and unique identifiers have been assigned to its output components,

but these components are not yet part of the evolution history graph. A composite step

enters the assigned state whenever any of its substeps is assigned.

The assigned state is reached automatically from the scheduled state. When a

designer is available, the schedule is used to determine his/her next assignment. If his/her

next assignment is ready to be carried out then the step status is automatically advanced to

"assigned" and the designer is informed of the new assignment. When a step is assigned,

the version bindings of its inputs are automatically changed from generic to specific. An

edge is added as an input edge between the primary input component of the step and the

step itself in the configuration graph. It is in this state where the designer gets his/her

assignment, does the required modification/development, and integrates and tests these

modifications before the transition to the final state "completed".

e. Completed State

1I this state the outputs of the step have been verified, integrated, and

approved for release. This is the final state for each successfully completed step. This state

can only be reached from the assignd state using the "commit.step" command. In this

state the output components of the step have been added to the configuration graph. An

output edge has also been added to the configuration graph between the step and its output

component(s). A composite step enters the completed state when all of its substeps are

completed

f. Abandoned State

In this state the step has been cancelled before it has been completed. The

outputs of the step do not appear as components in the evolution history graph. All

32

H

completed work, if any, of the step and the reasons why the step is abandoned are stored as

attributes of the step for future reference. This is the final state for all steps that were not

approved by the management or cancelled in the "approved", "scheduled- or "assigned"

states.

g. Relation to the Original Graph Model

The Evolution Control System, ECS, uses the above states to represent the

different actions an evolution step goes through during its lifetime. The difference from

[52] is that an assigned state is added between the scheduled state and the completed state

to differentiate between the cases in which a step is scheduled (planned) but not yet

assigned to a designer and those cases where the step is assigned to a designer and the work

is in progress. It is always desirable to have a complete schedule for planning purposes to

determine the feasibility of accomplishing the required changes by certain deadline and

meeting various management constraints. This differentiation is needed for our automated

management system (ECS) in case of suspending or abandoning a step. If the step status is

scheduled, then the response is removing it from the schedule, changing its status to

approved or abandoned respectively, and updating the schedule. If the step status is

"assigned", then before issuing the previously mentioned actions, a warning to the manager

that an effort is about to be wasted is issued, and in case of his confirmation, "all completed

work if any" has to be saved as an attribute of the step for future reference.

3. Constraints on State Transitions

The following constraints are imposed on some state transitions of composite

steps and their sub-steps in order to ensure consistency in the evolution histories containing

both composite and atomic steps. These constraints are the same as those stated in [52] with

a slight modification to correspond to the newly added state:

1. When a step changes from the "approved" state to the "scheduled" state all of its sub-
steps automatically make this transition.

2. When a step is rolled-back from the "scheduled" or "assigned" state to the
"approved" state all of its sub-steps automatically make the same transition.

3. A composite step automatically changes from the "assigned" state to the "com-
pleted" state when all of its sub-steps have done so.

33

I
4. A composite step automatically changes to the "abandoned" state when all of its sub-

steps have done so.

5. When a step changes to the "abandoned" state all of its sub-steps automatically make
the same transition.

6. When a new sub-step is created, it enters the same state as its parent step and inherits
all version bindings associated with the parent step.

4. Specifying Inputs to the Evolution Steps

Evolution steps have two kinds of inputs: primary inputs and secondary (non-

primary) inputs. An input to a step is primary if and only if it is the previous version of the

same object as the output of the step as defined in equation (9). An initial approximation of

the secondary inputs of an evolution step can be derived from the "used by" relation, since

a step can depend on all the components used by its primary input. This is formalized as

follows:

ALL (cI c2: C, s: S:: c2 used-by cl& cI e primary-input (s) =>

c2 e initial-secondary-input (s)) (14)

The set of secondary inputs to a step should include all the component versions

used by the output of the step. The above is a mechanically derived initial approximation

of the set of secondary inputs. This approximation may need some manual adjustment.

since design changes may introduce dependencies that did not exist in the previous version,

and can remove some dependencies that did exist. Such adjustments are made via the

editing commands provided by the ECS.

S. Induced Evolution Steps

When a step modifies a component, it implicitly induces a set of other steps to

carry out the corresponding changes in all of the other components which depend on the

one that is modified by the original step (the inducing step). This means that induced steps

produce versions of their primary inputs which are consistent with the output version of the

inducing step and in the scope of the current top level evolution step. This concept is

formalized in equations (8, 9, 10), which provides the basis for automatic construction of

the set of induced steps for a given inducing step.

34

I

The purpose of this construction is to alert the sottware engineers and the

management of the impact of the proposed changes and to prevent consistency problems

due to incomplete propagation of the consequences of a change.

Since the inputs to the top-level evolution step are bound to specific versions at

the time the step is assigned, the set of induced steps cannot be influenced by any changes

due to parts of any other top-level steps that may be executed concurrently. The predicate
"current" is evaluated with respect to the version bindings of the top level step. For all but

the initial version of the components, the "used-by" relationships can be derived from the

secondary input relationship in the evolution history graph.

m n uses, prmaryinput

Ssecondary input

FIGURE 7. Induced evolution steps.

An example of induced steps in a small system implemented in Ada is shown in

Figure 7 (taken from (52] p. 926). The initial configuration of the system shown in the

figure consists of three components. Th.- step sl changes the main program without

affecting the package specification and does not trigger any induced steps. Similarly the

step s2 changes the package body without affecting the package specification or triggering

any induced steps. The step s3 changes the package specification and triggers induced steps

35

1
s3.1 and s3.2, which must update the main program and the package body to be consistent

with the new package specification.

6. Induced State Transitions

The following constraints are imposed on some state transitions of induced steps

and their inducing step in order to ensure the consistency of the configuration. These

constraints are similar to those stated in [52] with minor changes to reflect the addition of

the "assigned" state to the model,

a. An inducing step can change from the "assigned" state to the "completed" state only
when all of its induced steps have done so.

b. An induced step changes automatically from the "approved" state to the "scheduled"
state when its inducing step does so.

c. When an inducing step is rolled-back from the "scheduled" or "assigned" state to the
"approved" state all of its induced steps automatically make the same transition.

d. A "roll back" of an induced step can be done only by rolling back all of its inducing
steps.

e. Abandoning an inducing step causes all of its induced steps to be abandoned.

f. An induced step can be abandoned only by abandoning its inducing step.

7. Applying The General Graph Model to PSDL

The PSDL (Prototyping System Description Language) prototyping method uses

a hierarchical decomposition strategy for filling in more details at any level of a prototype

design. It uses stepwise, topdown refinement to selectively refine and decompose critical

components. Each higher level component is described in terms of lower level components

and the relations among them. The decomposition of each level is a realization of the

components at a lower level of detail [53). This hierarchical structure of the PSDL

prototyping method is compatible with the underlying data model defined for the evolution

history graph and introduced in section Ill.B above.

PSDL has been designed to prevent implicit interactions between modules, thus

supporting module independence. The state of a state-machine operator is purely local in

PSDL. One cannot send a data stream directly to a composite operator's componeni

because the component names are not visible outside the implementation part of the

composite operator.

36

!
This locality makes it easier to modify PSDL prototypes because the number of

modules affected by a change are limited and can be determined by a straightforward

mechanical analysis (541. "This is because when a composite module is decomposed into

sub-modules, the implementation of the composite module uses its own specification and

the specifications of the sub-modules, but not the implementation of the sub-modules [521.

"This limits the impact of evolution steps and indicates that each "part of" relation between

a module and its sub-modules implies a "used-by" relation between the specification of the

sub-modules and the implementation of the module. This also implies that the "used-by"

relation can serve as the basis for automatic identification of inputs of a proposed evolution

step and identification of induced steps triggered by a proposed step.

The "usedby" relation is not only defined between PSDL components but also

between the requirement hierarchy and the corresponding PSDL components that fullfil

each requirement. This means each PSDL component can be traced to a requirement in the

requirement hierarchy and vice versa. This implies that a change in a system requirement

can automatically generate a proposed evolution step to modify the specification of the

corresponding component which, if approved by management, can generate the

corresponding induced steps of this change to the specification/implementation modules

that use the original specification.

A change request is normally represented by an evolution step that can be apihlied

to one primary input component. However, as a natural result of the explicit relations

among the modules in PSDL, it becomes obvious that the implementation of the change in

one component can lead to changes in several system components. This leads to changing

the atomic step into a composite step and producing a new atomic step for each of the

affected components. These new atomic steps are called induced steps while the step

inducing them is called the inducing step. As a result, the inducing step becomes a

composite step and the induced steps become its substeps.

In order to eliminate the possibility of unnecessary relations between composite

steps and their substeps, the composite evolution step may not produce any new component

by itself, i.e., it is an empty step.

37

Figure 8 shows what we mean by unnecessary relations between a composite step

and its substeps. In Figure 8.a step S I is the composite step with the primary input A. steps

S2 and 53 are two induced steps with primary inputs B and C respectively that uses module

A. For step B or C to start step A has to be completed which is impossible because SI is

composite ster and it will not be completed unless S2 and S3 are completed (circular

dependency). In Figure 8.b, SI is designated as an empty step with 52, S3. and S4 as its

substeps that have the same relations as those between S 1, S2 and S3 in Figure 8.a. This

way S2 can be committed permitting S3 and S4 to start, when S3 and S4 are completed, S I

is committed producing a new configuration of the whole software system incorporating

this change.

A

B CA

S3 B S4 C

(a) (b)

j dependency relation

m . part-of relation

FIGURE & Relation between composite step and its substeps

The composite step decomposition occurs when the step is approved by the

manager. This triggers the automated step analysis process that analyzes the relations

between the primary input of each step and the rest of the system components, determines

the initial approximation of the affected modules (the set of modules that use the output of

the step, which can be approximated by those modules that use the primary input of the

step) that have to be modified to propagate the required changes, and creates a sub-step for

each of the affected modules. These induced steps behave no differently than any other step

38

I
and they may have relations with one another or some other evolution steps. Since the

composite step itself is an empty step, there are no dependency relations between the

composite step and its sub-steps.

C. SCHEDULING MODEL

The task in our case is to schedule a set of N evolution steps S = {SI, S2-..,., S N relative

to a set of M designers D (D1, D2,.... DM1. The designers are of three possible expertise

levels (Low, Medium, High). Each step has associated with it a processing time tp (Si), a

deadline d (Si), a priority p (Si), and required expertise level e (Si). Steps have precedence

constraints given in the form of a directed acyclic graph G = (S, E) such that (Si, Sj) e E

implies that Sj cannot start until Si has completed.

Because of the dynamics of the prototyping/evolution process, the steps to be

scheduled are only partially known. Tune required, the set of sub-tasks for each step, and

the input/output constraints between steps are all uncertain, and are all subject to change as

evolution steps are carried out.

Our goal is to dynamically determine whether a schedule (the time periods) for

executing a set of evolution steps exists such that the timing, precedence, and resource

constraints are satisfied, and to calculate this schedule if it exists.

1. Scheduling Constraints

During software system evolution/prototyping, constraints that reflect the

importance and partial ordering of implementing evolution steps arise from real life

situations. These constraints influence the evolution process and they must be represented

in the scheduling model in order to reach a realistic schedule. The set of constraints that

affect scheduling evolution steps in the context of our model are the following:

1. Precedence constraints.

2. Timing constraints.

3. Priority constraints.

4. Resource constraints.

39

I
The precedence constraint is used to reflect the inter-dependencies between the inputs

and the outputs of evolution steps. The intent of this constraint is to impose a sequential

ordering between given pairs of steps. The precedence constraints among evolution steps

are represented in the form of a directed acyclic graph G = (S. E) such that (Si. Sj) 6 E

implies that Sj cannot start until Si has completed.

The dependency relation between evolution steps implies a precedence constraint

between these steps. These relations can be formalized using the dependency graph

definition above and considering C as the set of system components as follows:

ALL(c : C, si.si: S Ifsi, c) e O& 1c, sji e I :: (si, sj) e E) (14)

These dependency relations mean that an atomic evolution step cannot start

unless the module that needs to be changed is available as well as all the modules that affect

this module. Most of the precedence relations art. calculated automatically. Additional

ordering constraints can be added manually by the manager, due to considerations such as

a designer with a special skill is due to be assigned to a different project or that one step

will be easier or less uncertain if some other step is carricd out first.

The precedence attibute of a step, defined as the set of steps that precede this step,

is used to resolve conflicts when two steps S I and S2 are bound to the same generic primary

input. It is also used to determine which version of a secondary input component to a step

S! is used when this component is specified by generic reference and its current version is

". "'Wary input to another step S2. If S2 precedes SI then the secondary input of S I will be

bou,,. to the output of S2 and (S2, Si) e E, otherwise it is bound to the current version (the

primary input of $2).

The timing constraints of a step are specified in terms of two parameters: the

deadlines, the time by which the step must be completed according to customer restrictions

or manager's resource planning, and the estimated duration, a management estimate of the

time needed to perform the step.

40

The priority, a small positive integer, is assigned to a step to reflect the criticality

of its deadline. The deadline of a higher priority step can be relaxed only if it cannot be met

when the deadlines of all lower priority steps are removed.

The priorities of different steps should be compatible with the precedence

constraints between these steps, i.e. no lower priority step can precede a higher priority

step:

If(S 2, S1) e E implies that p (02) >= p (S1) (15)

If (S2, S1) e E & p (Si) >= p (S3) implies that p (S2) >= p (S3) (16)

The ECS system should enforce these constraints and warn the manager to make

the necessary changes (change either the precedence or the priority of the step) to comply

with these constraints.

The only resource constraint of a step in our system is specified in terms of either

of two parameters: the expertise level required to perform the step as one of three levels

(low, medium, high) defined for the memb-.rs of the design team, or by specifying a certain

team member to perform the step.

In addition to automatically generated precedence constraints, the precedence,

timing, priority, and resource constraints are assigned manually by the manager and may

be changed during the evolution process according to the state of the system's evolution

and external constraints as well as to resolve schedule conflicts.

2. Dynamics - What Can Change

Since one of the main goals of this system is to support incremental replanning as

additional information becomes available, it is important to define what kind of additional

information can be added/updated, the impact of such changes on both the scheduling and

assignment processes, and how this may also impact the goal nf minimizing wasted design

efforts due to these changes. The candidates for change during the evolution/prototyping

process are the following:

I. The primary inputs.

2. The secondary inputs.

2. The affected modules.

41

I
3. The precedence, priority, and deadline.

4. Task decomposition
5. The estimated-duration for performing each step.

6. The design team members.

In the following subsections each of these change candidates is discussed.

a. Primary Input Changes

Normally, an evolution step has one primary input except in case of merging

different versions of the same component. In this case an adjustment (addition or deletion)

of a primary input may be needed. This change has no additional effect on the schedule

because it does not affect any of the other components, since all the step attributes (mainly

secondary-inputs and affected-modules) should have been calculated using the original

primary input.

b. Secondary Input Changes

Due to the ongoing concurrent changes and adding/deleting of components

to/from the system, dependencies that did not exist in the previous version may be

introduced, and dependencies that did exist may be removed. These dependencies are

reflected in each step by a set of secondary inputs (all the components that are used by its

primary input) which has to be changed to reflect any dependency changes by adding new

secondary inputs to, or deleting existing secondary inputs from the secondary_inputset of

the step. The additional impact of this change depends on the status of the step.

1. If the step status is "proposed/approved" then the change has no additional effect.
2. If the step status is "scheduled" then the impact in this case includes the following:

a. modifying the dependency graph to reflect these changes.
b. recalculating the schedule according to the modified graph.

3. If the step status is "assigned" then the impact in this case includes all the changes
mentioned in 2 above as well as the following:

a. suspending any assigned steps that become dependent on any uncommitted
steps.

b. assigning any new steps that become ready.
c. sending immutable copies of the new secondary inputs to the corresponding

designer.

42

I
Note that before the ECS suspends a step it warns the manager that the current

change leads to the suspension of the step. This gives the manager a choice of either

confirming the change or binding the modified secondary input to an older version so that

no suspension occurs.

c. Affected Modules Changes

This is used to add/delete affected modules to a step after reviewing the

automated analysis due to missing relations in the configuration graph that the system does

not consider during this analysis. The impact of this change depends on the status of the

edited step.

1. If the step status is "approved" then the impact is adding/abandoning the correspond-
ing step.

2. If the step status is "scheduled" then the impact in this case includes the effects men-
tioned in I above with the addition of:

a. modifying the dependency graph to reflect these changes
b. recalculating the schedule according to the modified graph.

3. If the step status is "assigned", then the impact in this case includes all the effects
mentioned in 2 above as well as the following:

a. suspending any assigned steps that become dependent on any newly added
steps

b. assigning any steps that become ready.

d. Precedence, Priority, and Deadline Changes

Precedence, priority, and deadlines are used by both the scheduling and

assignment mechanisms to resolve conflicts regarding the dependency between different

steps and establish a partial or total ordering among the approved steps. The impact of

changes to any of these parameters depends on the status of the step.

1. If the step status is "proposed/approved" then the change has no additional effect.
2. If the step status is "scheduled" then the impact in this case includes the following:

a. modifying the dependency graph to reflect these changes.
b. recalculating the schedule according to the modified graph

3. If the step status is "assigned" then the impact in this case includes all the changes
mentioned in 2 above as well as the following:

a. suspending any assigned steps that become dependent on any uncommitted
steps

43

b. assigning any steps that become ready.

Note that when changing the precedence or the priority of a step the

compatibility between these two constraints should be checked according to rules (16), and

(17).

e. Step Decomposition

The term step decomposition is used to explain the situations in which a

designer is assigned an atomic step, but while carrying out his step decides to decompose

the assigned component or change the existing component's composition. It is for these

cases that the restriction on atomic steps to produce at most one component has been

relaxed to permit atomic steps to produce zero or more output components.

After this modification to the graph model a designer can decompose his

assigned component and work on its subcomponents within the estimated duration of his

original component, or he has to change its estimated duration to avoid the warning of

missing the estimated finish time. The ECS checks for such situations when executing the

commitstep command issued by the designer. The following cases are considered when

the designer commits his step:

1. The ECS looks first for the modified version of the primary-input component of the
step, and commits it to the shared data space (configuration graph) creating a new
version of the primary-input component of the step. Let us designate this output
component as the main component and the primary-input component as the original
component.

2. If the step output is not atomic (i.e., more than one modified component in the
designer's private-workspace) then for each of these components the ECS does the
following:

a. If the component is part-of the main component, the designer is asked if he
wants to commit this component and whether the work in this component is
complete.

b. If the component is to be committed, the work is complete, and the component is
a part-of the original component then it is added to the c'.ifiguration graph as
part-of the main component and as the successor of the version that belongs to
the original component.

c. If the component is to be committed, the work is complete, and the component is
not a part-of the original component then it is added to the configuration graph
as part-of the main component and as the first version of itself.

44

d. If the component is to be committed and the work is not complete, then in addi-
tion to adding the component to the configuration graph as part-of the main
component as mentioned in b and c above, a step is automatically created with
this component as its primary input. This is the case with teamwork where a
designer normally decomposes a component into its subcomponents, creating
stubs for each created subcomponent then commits these subcomponents. auto-
matically creating a new step for each of them.

e. For those components that are partof the original component and not pan._of
the main component, the ECS asks if they should be deleted and delete them
from the main component composition if confirmed by the designer.

As an example of step decomposition, Figure 9.a shows the typical case when

a designer is assigned an atomic step S I I with component B as its primary input (this step

is part-of a top level step SI). He did his modifications to B and did not touch its

decomposition. The resultLg system is A* with a new version B* of B. In Figure 9.b the

designer changed the decomposition of B. He deleted F, added G, modified D, and kept E

untouched. When the designer commits his work the system checks for the original

component B, commits it, creating the new version B*, then commits D creating the new

version D*, E is kept in the new system configuration A*, F is deleted, and G is added. If

the work in G is not completed (according to the designer's response) a new step s 12 is

automatically created with component G as its primary.inpuL This new step (S 12) is a

sibling of step S11. When S 12 commits its output will replace component G as part of

component B*. When SI is committed the new system configuration A* is automatically

generated.

45

I

A A
Si

Ca)

Spart_of relation (b)

FIGURE 9. step decomposition

f. Time Estimate Changes

The time estimate is a management estimation of the time required for

execution of each step. The initial schedule estimation is based on these time estimatzs.

These estimates may differ from the actual time needed by the designers in charge of

executing the steps. Editing these estimates may be needed due to actual time required for

completed work or analysis of values of similar work, or for entry of time estimates for

automatically generated sub-steps. This editing will provide a better scheduling estimate.

The impact of these changes also depends on the status of the step.

1. If the step status is "proposed or approved" then the change has no additional effect.

2. If the step status is "scheduled or assigned" then the impact in this cae includes
recalculating the schedule.

46

g. Designer-Pool Changes

Three kinds of changes may take place in the designer-pool: add designer.

delete designer, and change a designer's expertise level.

a. Adding a designer triggers the assignment mechanism to find an assignment for the
new designer if there is one and the rest of the schedule is adjusted accordingly.

b. Deleting a designer has no impact if he is not assigned to a step and has no planned
assignment in the schedule, otherwise the manager is prompted for confirmation,
then if confirmed the assigned step is suspended and reassigned to some other
designer and the rest of his planned assignment are rescheduled to the rest of the
design team.

c. Updating the designer's exp-rtise level has no immediate impact on the current
assignment, but the planned assignments are adjusted according to his new expertise
level.

h. Impact of Changes

When the impact of a change includes suspending an assigned step, leading

to a rollback of some work done, or rescheduling some steps in a way that leads to missing

any of the deadlines, the system should alert the manager to such consequences, giving him

the option to continue with this change or cancel it and get back to the original conditions

before the change. In the first case where a step has to be suspended, the system should

prompt the manager with the candidate steps for suspension, how long they have been

assigned, and the estimated working time. In the second case where some deadlines have

to be missed, the system should prompt the manager with the candidate steps for missing

their deadlines and the earliest completion time for each step compared with the completion

time before the change. In both cases the manager should have the option to continue with

the change or cancel it and continue with the original situation.

3. Computational Feasibility

Scheduling tasks with arbitrary precedence constraints and unit computation time

in multiprocessor systems is NP-hard for both the preemptive and nonpreemptive cases

[671 [841. Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both

multiprocessor and uniprocessor systems [67] [83] which excludes the possibility of the

existence of polynomial time algorithm for solving the problem. Hong and Leung [34]

47

I
proved that there is no optimal on-line scheduler can exist for task systems that have two

or more distinct deadlines when scheduled on m identical processors where m > I.

Scheduling evolution steps to more than one designer with arbitrary precedence

constraints and arbitrary deadlines is a combination of both the multiprocessor scheduling

problems mentioned above which is shown by many researchers to be NP-hard. These

negative results dictate the need for heuristic approaches to solve scheduling problems in

such systems.

D. RESOURCE MODEL

The only resource required in our model is the members of the design team. They are

represented as a set D= (DI, D2,..., DM}, where M is the number of designers in the design

team. Each team member has associated A ith him an expertise level e (Di) to reflect his

expertise. The expertise levels represented are (low, medium, high). The resource

constraint of a step determines what level of expertise is (at least) required of a designer

who can be assigned to the step. Note: The manager may even require a specific designer

to perform a certain step.

E. ECS MODEL

The purpose of the Evolution Control System, ECS, is to provide automated support

for changes in plan during the execution of the plan, and provide automatic decision

support for planning and team coordination based on design dependencies captured in the

configuration model. The ECS also manages the software evolution steps from its creation

to completion and provide% automatic version control and configuration management for

the products of these steps. Additionally, the system manages the design team through

automation of the evolution steps' assignments to members of the design team in such a

way that maximizes the team's effort, supports cooperative teamwork, and meets the

management constraints such as precede.lce, priorities, and deadlines.

1. Context Model

The Evolution Control System (ECS) interacts with two external entities: the

software evolution manager and the software designer. These represent classes of human

48

!

users rather than external software or hardware systems. There is one external interface for

each class of user: the manager_interface and the designer_interface. Both of these

interfaces are views of the proposed ECS. The message flow diagram in [10] and the

stimulus-response diagrams in Figures 10, 11, 12 and 13 show the context of the system

and the available commands, their effects and the possible error conditions.

Designer I

commit-substep

u DesignerInterface

show-steps designerpool
create-step -o. S controls 'edit_step =' ECS ,,configuration-graph

showsched _A_,L schedule

- ManagerInterface

create_prototype, approve-step, schedulestep,
commit.step, abandon-step,
suspendstep, manager confirmation,
addcdesigner, drop-designer, designer-expertisejlevel

-- • Manager

FIGURE 10. ECS message flow diagram

2. Event List

The event list for the ECS consists of 25 events. Most of the events are command-

driven. The following is a list of the events; events triggered by the manager are marked M,

events triggered by a designer are marked D, and common events for both designers and

manager are marked C following the event name.

1. createprototype (M) 2. create-step (C)

3. approvestep (M) 4. schedule-step (M)

5. commitstep (M) 6. commit substep (D)

49

7. abandonstep (M) 8. suspend.step (M)

9. show-steps (C) 10. show-schedule (C)

I1. adddesigner (M) 12. drop-designer (M)

13. designer-expertiselevel (M) 14. edit-step (M)

15. managerconfirmation (M)

The ediLstep event is a set of events by itself as listed below:

1. add-primary-input 2. add-secondary-input

3. add_affected-modules 4. delete.primary.input

5. delete-secondary-input 6. delete-affected-modules

7. update-precedence 8. update-priority

9. update-deadline 10. updateestimated_duration

11. stepexpertisejlevel

3. State Model And Related Concepts

The state of the ECS consists of a configuration graph, a schedule, a set of

designers, and mappings giving the following attributes for each evolution step: deadline,

estimated duration, precedence, priority, status and required expertise level. The formal

definitions of the state model and the constraints on a feasible schedule are defined in

Appendix A.1.

a. Configuration graph

As presented in section B, the evolution history is modeled as a graph G=[C,

S, CE, SE, I, 0]. This graph is a directed acyclic graph (bipartite with respect to the edges

I and 0). C and S are the two kinds of nodes (C: software component nodes, and S:

evolution step nodes respectively). Each node has a unique identifier. C and S nodes

alternate in each path that has only I and 0 edges. This represents the evolution history view

of the graph. The edges rep•..•nt the "part-of" (between a sub-component of a composite

component and the composite component) and "used-by" relations (defined between

components to represent the situation where the semantics or implementation of one

component A depends on another component B; B used.-by A) between the software

50

I
components of a given configuration (CE a C x C), the "partnof" relation between a

substep of a composite step and the composite step (SE c S x S), the input relation

between the system components which must be examined to produce output components

that are consistent with the rest of the system and the corresponding evolution

steps(I a C x S), and output relation between evolution steps and the components they

produce (0 c S x C). System components are immutable versions of software source

objects that cannot be reconstructed automatically. This graph is referred to from now on

as the configuration graph. In Appendix A. .a we formalize the structure of this graph as

well as the two data types; components and steps that constitute its nodes

b. Designer-Pool

Designers are the only resource used by the ECS. The type designer is part of

the ECS state model. Formal specifications of type designer is presented in Appendix

A.l.b.

c. Schedule

The schedule in our system is a data structure representing the mapping

between the steps and the scheduled designer to perform each step together with the

estimated start and finish time. Formal specification of this data structure and the relevant

concepts are presented in Appendix A. 1.c.

4. Manager Interface

The manager interface to the ECS enables the manager to create new prototypes,

provide for the evolution of the existing prototypes via a complete set of commands for

creating, editing, scheduling, suspending/abandoning and/or committing evolution steps,

and manage the designer. pool data via adddesigner, drop-designer, and

designer._expertise_level commands. The formal specifications of the various commands

with the different responses for each command are defined in Appendix A.2 and Appendix

A.3.

51

I
S. Designer Interface

The designer interface to the ECS enables the designer to view the steps in a given

prototype with a given status and get the sub-steps assigned to him. This interface also

enables the designer to create a sub-step of an assigned step as well as committing the

assigned sub-step. The formal specifications of the various commands with the different

responses for each command are defined in Appendix A.2 and Appendix A.4.

52

Don1
schedule changes

addjprimary input
a dd secondai~y toiput change undone

-addafected m~od
El changemnot..authorized

circular~precedence

undefined object

update~pmcedencesceu-
updatejpriorityupdate dendline
update estimated- priority conflict (priority, precedence only)
duration - l0

change undone

chage not-authorized

0 icuarprecedence

O o-Such-step

deitte~primary input
delete secondaiy input
delete affected miodules schiedule-chianges

undefined -input

DO.-Such -step

FIGURE 11. Stimulus Response diagraim for the edit interface

53

I

Done

Create prototy
soM1prototype eit

schedule

!show scbedul V
no available schedule

substeps

approve step N

step is..not, in proposedstate\ 1.•
No such step

schedule changes

infeasible schedule
schedule step %%

1 estimated duration not speciried

circular precedence

step_4snotapproved

no sucb step.......-... ,.,,

Commit step oa

Suspend step

Abandon step M schedule-changes

no.sucbhstep

FIGURE 12. Stimulus Response diagram for the manager interface

54

I
schedule changes

Add designer DPV

"designer exists

nedone

Drop designerdM PVw rigjo€fwrmationj rquured

"2ý'schdle
changes

change undone

no such designer

Sdesignersshow designe.
..

••/"N empty designer pool

FIGURE 13. Stimulus Response diagram for the designer pool view

done

i
schedule changes

no such assigned sustep

C !ol°e°°t.°.dsig e pol

FIGURE 14. Stimulus-Response diagram for the designer interface

55

I
F. VALIDATION OF ECS SPECIFICATION

I. A Typical Scenario

Assume that we have a system Sys consisting of three main modules Ma. Mb and

Mc as illustrated in Figure 15. Ma consists of two objects Oa, Ob and Mb is atomic while

Mc consists of Oc, Od, and Oe. The relation "part-of" represents this hierarchical structure

as follows: Ma part-of Sys, Mb part-of Sys. Mc part-of Sys, Oa part-of Ma. Ob part-of

Ma, Oc partnof Mc. Od part-of Mc, Oe part-of Mc. The "part-of' relation also implies a
"used-by" relationship between the implementation module of the parent component and

the specification modules of the children cor.,ponents. The usedby relation for the

example is: every specification module of a component is usedby its implementation

module such as Sys.spec used-by Sys.imp, Ma.spec used-by Ma.imp. etc., and Oc.spec

used-by Oe.imp. The used-by relation between Oc and Oe can only arise in PSDL if a

timer is defined in Sys or Mc, this timer is started, stopped, or reset in Oc and the value of

this timer is read by Oe. This kind of dependency should occur rarely in practice. In figure

3 a thin arrow from A to B means A used-by B, while a thick arrow from A to B means A

part-of B & A used-by B.

Assume our design team has three members: Designer dl with expertiselevel

high, d2 with expertisejlevel medium and d3 with expertiselevel low. One typical

scenario of a change to this system can be described as follows:

1. Three evolution steps are created (using the create._step command) by the

designers, based on user feedback from a prototype demonstration, as shown in Table 1.

The system will assign a unique number to each of the created steps. The status of each

newly created step is "proposed". Each created step is added to the configuration graph as

an isolated node (at this point, the primary inputs of the steps are specified by generic

references, since we have not yet determined which version of the primary inputs will be

acted on by each step) with no input or output edges.

Create-step command also triggers the automated step analysis process that

analyzes the relations between the primary input of each step and the rest of the system

components, determines the initial approximation of the affected modules (the set of

56

modules that use the output of the step, which can be approximated by those modules that

use the primary input of the step) that have to be modified to propagate the required

changes. The analysis process is done as follows:

a. The system examines the image of the primary input modules under the

"used-by" relationship to find out what other modules have to be modified to reflect and

propagate the required changes. By examining the primary input to step s l the system

should find out that the only modules that use Ma.spec are { Ma.imp, Sys.imp). The same

analysis is done for both steps two and three, resulting in the two induced sets I Sys.imp }

and (respectively.

The ECS also calculates the secondary inputs of the step as the modules usedby

the primaryjinput of the step.

part Mb.o.& MC.s.
spcM. SO.se.l1l Mc.spec.l.l

iinp1.1 imp1.1 CMc.imp.l 1

Oa..1b.1.1 OC.1.1 d .1.1 O..

Oa.lm..l Ob .11 O•m.. d~p11O~m..

Spart-Of & used-by

Susedby

FIGURE 15. Version I of the given system.

2. The manager reviews the proposed steps and its calculated secondary inputs

and affected modules where he can edit these automatically calculated attributes using the

57

"editstep" command. The manager also, adds management constraints such as priority

(type natural), precedence (set of preceding steps), estimated time for completing the step

(hours), and deadline (time). Assume for the sake of this example that the manager added

the values shown in Table 1 for these attributes. The manager also can modify any of the

inputs to the step (using the edit-step interface). When the manager approves the step

(using the approve-step command) its status is changed from proposed to "approved".

step_
primary_ secondary expertise

stepid input input level precedence priority deadline status

sl Ma.spec.1 - Medium 10 d+ 16 proposed
s2 Sys.spec.l I High sl 9 d+ 18 proposed

s3 Oe.imp.l Oc.spec.1 Low 7 d + 20 proposed

Oe.spec.1

TABLE 1. THE PROPOSED STEPS AND THEIR ATITIRIBUTES.

3. Approving the step makes the system automatically create an atomic sub-step

of the top level parent step for each affected module. Table 2 shows the different substeps

created for each step. These sub-steps inherit the version bindings of their respective super-

step as well as its precedence, priority, and deadline. These substeps are added to the

configuration graph with part-of edges linking them to their super-steps.

4. The manager enters the estimated duration for each of the substeps. In this

scenario, the estimated durations entered are the values shown in Table 2. The manager can

then schedule the steps (using the schedulestep command), which triggers the scheduling

and job assignment mechanisms. The schedule (including the planned assignment of a

designer for each step and the estimated start and finish time for each step) is built

incrementally with the issuing of the schedulestep command for each step as follows:

a. When step sl is scheduled (using the schedulestep command), the

manager gets a schedule which includes the substeps of step sI as shwn in Table 3. This

schedule meets its deadline. The time T is the time when the schedule is produced. As

indicated in Table 3, sl.1 is automatically assigned to d2, the status of sl.l is changed to

"assigned", the primary input of sl.1 is bound to Ma.spec.l.l, a mutable copy of

Ma.spec. 1.1 is sent to the private workspace of designer d2, and a message (e.g., an email)

58

is sent to d2 telling him about his assignment. Notice that sl.2 and sl.3 are not assigned yet

because they are dependent on sl. 1. The assignment of sl.2 and sl.3 will be triggered by

the commitment of sl. I that makes both of them ready to be assigned.

stepexp
primary_ secondary ertise le estimated

step id substeps input input vel duration status

sI sI.1 Ma.spec. I Medium 7 approved

sl.2 Sys.imp.l Sys.spec.l Medium 6 approved
Ma.spec.A
Mb.spec.1
Mc.spcc. I

sl.3 Ma.imp.l M•.spec. 1 Medium 3 approved
Oa.spec. I
Ob.spec. I

s2 s2.1 Sys.spec., high 6 approved

s2.2 Sys.imp.A Sys.spec.l high 5 approved
Ma.spec.!
Mb.spec.l
Mc.spec.l

s3 s3.1 Oe.imp.i Oe.spec.1 low 5 approved
_______ _________ Oc.spec. 1I_ __ _

TABLE 2. THE SUBSTEPS CREATED FOR EACH STEP

step # designer starttime finish-time
sl.l d2 T T+7
sl.2 d2 T+7 T+13
sl.3 dl T+7 T+10

TABLE 3. THE CURRENT SCHEDULE AFTER SCHEDULING sl

b. When step s2 is scheduled (using the schedule-step command) shortly after

scheduling s I (we can neglect the time difference between scheduling s i and s2 relative to

the time units used for estimating efforts due to the difference in magnitude), an updated

schedule is calculated accordingly as shown in Table 4. Since the new schedule is feasible,

it becomes the current schedule and it is sent to the manager. Having s2.1 ready to be

assigned triggers the assignment mechanism that assigns s2.1 to dl. The status of s2.1 is

59

I
automatically changed to "assigned", the primary input of s2.1 is bound to Sys.spec. 1.1, a

mutable copy of Sys.spec. 1. 1 is sent to the private workspace of designer d 1. and a message

is sent to d I telling him about his assignment.

step# designer start time finib time

si.1 d2 T T1+7

s2i. dl T T+6

sl.2 d2 T+7 T+13

sl.3 dl T+7 T+10

s2.2 dl T+13 T+18

TABLE 4. THE CURRENT SCHEDULE AFTER SCHEDULING s2

c. When s3 is scheduled (using the schedulestep command) at t - T+3, an

updated schedule is calculated accordingly as shown in Table 5. Since the new schedule is

feasible, it becomes the current schedule and it is sent to the manager. The updated schedule

is also feasible. Having s3.1 ready to be assigned triggers the assignment mechanism that

assigns s3.1 to d3. The status of s3.1 is automatically changed to "assigned", the primary

input of s3.1 is bound to Oe.imp. 1.1, a mutable copy of Oe.imp. 1.1 and immutable copies

of the secondary inputs to s3. 1 (Oe.spec. 1.1, Oc.spec. 1.1) are sent to the private workspace

of designer d3, and a message is sent to d3 telling him about his assignment.

step# designer start time finish time

sI.1 d2 T T+7

s2.1 dl T T+6

s3.1 d3 T+3 T+8

s1.2 d2 'T+7 T+13

sl.3 dl T+7 T+I0

s2.2 dl T+13 T+18

TABLE 5. THE CURRENT SCHEDULE AFTER SCHEDULING s3

5. Since the three designers are informed about their assignment and the

components required for each step exist in the corresponding designer's private workspace,

the designers can start their assignments immediately. The rest of the assignments are

triggered by either the commitment of an assigned step, which makes the immediate

successor steps ready when there are idle designers waiting for tasks, or the availability of

60

I
a designer who has completed a previous task when there -!71- other tasks ready to be

assigned. Assuming a situation where everything goes as scheouied. the following actions

take place:

a. When dl issues the commnitstep command at t =T+6, s2. 1 is committed

producing Sys.spec. 1.2 and adding the corresponding node and edge to the configuration

graph, the private workspace of designer dl is cleared and he becomes idle. Committing

s2. I and having d I idle triggers the assignment mechanism that finds no ready step for him.

b. When d2 issues the commit-step command at t =T+7, s 1. I is committed

producing Ma.spec.1.2 and adding the corresponding node and edge to the configuration

graph, the private workspace of designer d2 is cleared and he becomes idle. Committing

sl.l makes sl.2 and sl.3 ready to be assigned, it also triggers the assignment mechanism

that assigns s 1.2 and sl.3 to d2 and dl respectively, automatically copying both the primary

and secondary inputs of each step to the corresponding designer's private workspace.

changing their status to "assigned", and sending both of them messages about their new

assignment.

c. When d3 finishes his assignment at t =T+8 and issues the commit step

command, s3.1 is committed which means adding the output of s3.1 (Oe.imp. 1.2) to the

configuration graph (shared data space) as a component node, and the corresponding edge

(s3.1, Oe.imp. 1.2) as an output edge. The private work space of d3 is cleared and d3

becomes idle. Committing s3.1 as the only substep of s3 triggers the automatic commitment

of s3 producing the new system version Sys. 1.2 as illustrated in Figure 16. Having designer

d3 idle triggers the assignment mechanism that finds no ready step to be assigned to d3.

d. When dl issues the commitdt-step command at t =T+10, sl.3 is committed

producing Ma.imp. 1.2 and the corresponding node and edge are added to the configuration

graph, the private workspace of designer dl is cleared and he becomes idle. Having dl idle

triggers the assignment mechanism that finds no ready step for any of the idle designers.

e. When d2 issues the commitsubstep command at t =T+13, sl.2 is

committed producing Sys.imp. 1.2 and the corresponding node and edge are added to the

configuration graph, the private workspace of designer d2 is cleared and he becomes idle.

61

I
Committing sl.2 makes s2.2 ready to be assigned which triggers the assignment

mechanism that assigns s2.2 to dl. Committing sl.2 as the last substep of step sl triggers

the automatic commitment of sI producing the new system version Sys. 1.3 as illustrated in

Figure 17. Similar actions take place when committing s2.2 and that lead to the automatic

commitment of step s2 producing the new system version Sys. 1.4 as illustrated in Figure

17.

This typical sccnario illustrates that the ECS provides the necessary commands

needed to create, ,ýpprove, schedule and commit an evolution step, as well as add its

management constraints, and trigger the assignment mechanism. The managerial functions

of determining the affected modules of a change and automatically creating evolution steps

for propagating these changes are automated. The manager retains the option to override

any automatic calculations through the edit commands (add and delete affectedmodules)

and may direct the continuity of actions by his approval via the approve-step command.

The planning process is autcmated via the scheduling mechanism which is triggered by the

schedule._step command. This scheduling mechanism finds a feasible schedule if one exists

or gives suggestions to the manager in order to get a feasible one, while giving the manager

the option to accept HCS suggestions or modify the management constraints to accurately

reflect all the management concerns.

The automatic assignment of the ready steps to the idle designers as well as the

triggering actions of these assignments are also illustrated. The ECS simplifies the

designer's task by sending copies of all the components he/she needs to complete his task

(primary and secondary inputs) in addition to a message telling him about the new

assignment that resides in his private workspace. As soon as the designer finishes his task

he can directly issue the commit-step command without having to worry about versioning

his component or controlling the configuration it belongs to since the version and

configuration control functions are automated and transparent to the designer.

This scenario also illustrates the incremental planning nature of the system where

new steps can be added to the schedule when they are available, and automatically

scheduled either by finding a feasible schedule if one exists or providing suggestions and

62

I
accepts the manager's inputs to fine tune the management constraints to reach a feasible

one.

--. 1

Gn

7

FIGURE~~~~ 16" Verio 2 tagve ytm
W3

FIUR 16. Veso afte ie ytm

* 63

4 04

FIGRE17 Vrson3 o te ~eiyLL

64i

cAL

CLJ

CL

0.

2L

FIGRE 8.Verion4 f te gve syte

650

A
2. Scenario for a Missed Estimated Finish Time

Now consider that our example does not go so smoothly and designer d2 was

unable to finish his assignment s 1.2 by its estimated finish time t = T+1 3. The assignment

mechanism should alert the designer that the estimated finish time has passed and ask for

formulation of a new estimate. The designer either responds by committing the step or

entering a new estimated-duration for this step. The schedule is then recalculated. If the

new estimatedduration is 9 instead of the original value 6, then the schedule is recalculated

as shown in Table 6.

step # designer start time finish time

s3.I d2 T T+7

s2.1 dl T T+6
s3.I d3 T+3 T+8

si.2 d2 T+7 T+16

sl.3 dl T+7 T+10

s2.2 dl T4.16 9

TABLE 6. THE CURRENT SCHEDULE AFTER THE NEW
ESTIMATED-DURATION OF sI.2

In this schedule s2 has missed its deadline. Note that s2.2 depends on sl.2. and

sI.2's new finish time is t = T+16 and s2.2 needs 5 time units to finish, the manager gets a

warning that s2 will miss its deadline and the suggestion of a new deadline to be equal to

the estimated finish time.

The system in this case monitors the estimated finish times and warns the

corresponding designer if the finish time of his task is reached without issue of the

commit.step command. The system also warns the manager in this case only if the designer

chooses to change the estimated duration of his task and this change leads to missing any

of the deadlines of the steps and provides the manager with appropriate suggestions.

3. Scenario for an Early Commit

Now consider designer d2 finishes his assignment sl.2 after 4 time units instead

of 6 time units. In this case the system will not wait until t = T+ 16 to assign s2.2, but s2.2

66

I
is assigned right away giving it a chance for early completion, and the schedule is adjusted

as shown in Table 7.

In this case the positive effect of finishing a task early may lead to a ripple of

positive effects for the whole schedule if the next task for the designer who finished early

is ready. If the next assignment is not ready or no next assignment exists for the designer,

the schedule will not be affected. As an example, if d3 finishes s3.1 at t = T + 6, the schedule

will not be affected because there is no other ready step that requires a low expertisejlevel.

step# designer start-time finisbhtime

sl.1 d2 T T+7

s2.1 dl T T+6
s3.1 d3 T+3 T+8
s1.2 d2 T+7 T+iI
sl.3 dl T+7 T+i0
s2.2 di T+÷I T+16

TABLE 7. THE CURRENT SCHEDULE AFTER THE EARLY COMMIT OF

sl.2

4. Scenario for Changing the Precedence of a Step

Using Table 5 as our final schedule, a possible change that can occur as the

schedule is carried out is changing the precedence of one or more steps. Consider that the

manager decided to change the precedence of step s I from none to be preceded by step s2

and the precedence of s2 to be preceded by none (using the update-precedence command).

As soon as a precedence changes the system checks two conditions for conflict: 1) that the

new precedence does not lead to a circular dependency between the scheduled steps and 2)

that there is compatibility between the priority of this step and the priorities of the steps that

precede this step and warn the manager accordingly.

In our case changing the precedence of s2 produces no warning messages when it

happens. Changing the precedence of s I leads to different warnings according to when it

takes place. If the precedence of s I is changed before that of s2, the manager gets the

warning "circular-precedence" (at this point sl precedes s2 and s2 precedes s 1) which will

be eliminated by changing the precedence of s2. When this warning is fixed or the

precedence of si is changed second the manager gets the warning "prioritysconflict"

67

because s2 now precedes sl and p iority of sl is greater .han that of s2. This conflict is

solved by changing the priority of sl to the value 8 (using the update-priority command).

This last change is also checked for conflicts and none are found.

The impact of this change on the current schedule depends on when such a

change takes place. Let us consider two cases where the impact is different as an example

of the capabilities of the ECS. In the first case we consider the situation where the change

takes place before t = T+ 7 and the second one is at t = T+8.

a. Changing Precedence Leading to an Infeasible Schedule

When the precede :e change occurs before commitment of sl.1 at t = T+7,

the manager gets the warning "infeasible.schedule" (because sl misses its deadline) and

the suggestion that the deadline of sl should be changed to 17 instead of 16. Since this value

is the lower bound (it is the total execution time of three dependent steps), the manager has

the option of either to accept the system's suggestion or to undo the change and keep the

original feasible schedule. The resulting schedule when the manager accepts the system's

suggestion is shown in Table 8.

step # designer start-time finish-time

s2.1 dl T T+6
sl.l d2 T T+7
s3.1 d3 T+3 T+8
s2.2 dl T+ 11
sl.3 d2 T+7 T+I0
s1.2 d2 T+ I

TABLE 8. SCHEDULE AFTER CHANGING THE PRECEDENCE OF SI, S2
BEFORE T+7

b. Changing Precedence Leading to Infeasible Schedule and Step Suspension

When the precedence change occurs at t = T-8, after committing s 1. 1 and

assigning sl.2, step sl.2 becomes dependent on s2.2 and s2.2 is not yet assigned. The ECS

sends a warning to the manager that sI1.2 has to be suspended. At this point the manager has

the option either to reject the suspension of sl.2 and, as a result, the precedence change is

undone and the original schedule is restored, or confirm the suspension of s1.2. In the latter

68

-ase. the ECS calculates the updated schedule A hich includes suspending 1I 2 until s2.2 is assigned

and completed. As a result. sI.2 is automatically suspended by sending a message to its designer

telling him that the step is suspended. clearing his private workspace. and sending him his nes,

assignment if there is one. The manager then gets another warning that the updated schedule is,

infeasible (sl misses its deadline). Again the manager has the option to either accept the updated

infeasible schedule or to tune the other management constraints to get a feasible one.

step 9 designer start time finish time

sI.I d2 T T+7

s2.1 d I T T+.
s3.1 d3 T+1 T+?(

sl.3 d I T+7 T+ I(0

s2.2 dl T+10U T+15

i.2 Cd2 T+15 " T27::Y.

TABLE 9. SCHEI)ULE AFTER CHlANGING TIlE PRECEDENCE, CASE 2

'This scenario illustrates how the ECS keeps the manager informed of the

consequences of his decisions and gives him the necessary data to take appropriate action. It also

shows hoss a step is automatically suspended after manager confirmation without costing him or

the designer any additional effort. This facilitates streamlining of both of their tasks.

5. Scenario for Changing the Decomposition of an Assigned Task

Let us consider again the typical case where everything goes smoothly as scheduled in

Table 5. This time when sl.i is assigned to d2 he finds out that the module Ma.l.I has to be re-

decomposed. The new decomposition keeps Oa after modifying it, adds a new component Of. and

deletes Ob. Now d2's private workspace includes the modified components Oa.spcc. 1. 1. Of spe.

and Of.imp fness components do not have version or ,,ariation numbers, yet) When d2 cmmit, hi.

step. usine the commitstep .ommand. The following actions take pla.e

a. The modified component la.spec.1.1 (the primary input) is %.ontipr-,!.

(calculates its version and variation numberi as Ma.spec. 1.2. and added to the ionfiguratin graph

I \ha-d data spaLe)

69

rA WA

4/-Al

FIGRE 9. erion3 u tE ssemfertkdcmpiio

7C0

b. The modified components Oa.spec.l.l, Of.spec, Of.imp are committed as

Oa.spec.l.2. Of.spec.l.l. and Of.imp.l.l. Two proposed steps are created with primary inputs

Oa.spec. 1.2, Of.spec. 1. 1 respectively.

c. Committing s I. i requires d2's interaction to change the secondary input set to s1.3

to include Of.spec. 1. 1 and delete Ob.spec. 1.1.

d. When the top level step sl commits later, the part-of relation of the new version

Ma.l.2 should be modified to include Oa.l.2, Of.l.l, and exclude Ob.l.l as shown in Figure 16.

6. Assessment of the Adequacy of the Proposed Command Set

To assess the adequacy of the proposed command set for the purpose of the ECS, we walk

through the different functions and operations required by the system and check whether the given

command set is sufficient to perform each one of them. The best way to do that is to start from

scratch where we have no prototype in the environment. The create-prototype command enables

both the manager and the designer to create new prototypes with unique names as a logical first

step. The evolution of this prototype is done via evolution steps. The creation of such steps is done

ising the create-step command which leads to a creation of a step in the proposed state. The

management control over ongoing evolution activities is enforced via the approve-step command.

This command convols the steps accepted for the system's consideration, and gives the manager

the ability to enter and update the management constraints (precedence. priority, deadline, and

estimated-duration) as well as the step attributes (primary, secondary, and affected modules) via

the corresponding commands update-precedtace. update-priority. update-deadline,

update-estimated-duration. add/delete primary-input, secondary-input, and affectedmodules.

The schedule-step command is a manager command for incremental planning of approved steps

%%hen they become available either after ftlfillment of its management constraints or having a

budget to implement it. The continuous control of the manager over the step% in progres%

(scheduled or assigned) is guaranteed via the suspend-step. and abandon_,tep command% that

enable him to suspend a step and get it back to the approved state or abandon the step completely

as dictated by various management situations. The manager's confirmation is also a condition to

any automated system decisions concerning suspending a step according to a ne%, dependency

inserted into the system, or slipping a deadline to get a feasible schedule. The manager in both

71

!I
previous cases is given the choice to either confirm the system decision or use the set of edit

commands at hand to adjust various attributes of the step or the management constraints to reach

a decision that accurately reflects the management's concerns. The set of commands add-designer,

drop-designer. and designer-expertisejlevel enables the manager to control the designer pool.

Designers tasks are streamlined with the ECS. The designer interface has two main

commands. The create-step and commitistep commands enable him to create a step according to

prototype demonstration feedback or a change request from the customer site, and to commit his

completed work of his assigned step without having to worry about the versioning of his committed

components since the version and configuration control are transparent to him. The designer does

not need any other commands since the system sends to his private workspace all the data required

to do his task including the primary and secondary inputs of the step.

7. Questions and Design Decisions

1. Is the designer responsible for a composite step also responsible for its sub-steps?

No, otherwise each top level evolution step must be done by a single designer. This is not

acceptable because team effort must be supported for rapid updates.

2. Can the ECS assign more than one step to the same designer at the same time?

No. The main reason for not doing that is to minimize the development time via maximum

concurrency. This goal could only be reached if we let each designer concentrate on one task and

get it done in the minimum time to enable the system to assign more tasks. This is due to the fact

that a step can only be assigned if it is atomic or if all the steps it depends on are committed. This

guarantees the consistency of the software system via change propagation and minimized roll-

backs.

3. Is keeping a step history (recording the sequence of versions of an edited step) of value to

the design/prototyping process'!

Yes, this may help in tracing changes to a step, determining what kind of change to a step

are most likely to happen. the effect of each kind of change on the system releases and deadlines,

and accordingly help decide what kinds of step editing should be permitted: e.g. avoid step editing

that has adverse effects on step completion. The main uses of this information are to improve the

tools and process guidelines, and to evaluate the abilities of managers and designers. This capabil-

72

[

ity would not be used directly in the operation of the ECS. For this reason, we do not consider it

further in our requirements and design.

73

IV. DESIGN DEVELOPMENT OF ECS

A. MODELING THE DESIGN DATABASE

The data in the design database includes all the components of the ECS state as given

by the functional specifications in Chap'er lIl.F, and Appendix A. 1. These components are:

the configuration graph, the current schedule, and the designer's pool. The configuration

graph, G=(C, S, CE, SE, I, 01, consists of two sets of nodes, C and S, the software

component nodes and evolution step nodes, and four sets of edges, CE, SE, 1, and 0, the

different kinds of edges representing the relations between pairs of evolution graph nodes

component-component, step-step, component-step and step-component respectively. The

design database (DDB) schema as well as the mapping between the components of the ECS

state model to this schema is presented in the rest of this section. The implementation

details of this schema using Ontos database [631 is given in Appendix B. The Ada interface

to the design database schema which contains the definition of an Ada package (both

specification and body) that enable the main ECS program (in Ada) to access the shared

data in the design database according to the DDB schema, is given in Appendix C. 1.

1. Design Database Schema

The main types defined in our database schema, shown in Figure 20, are:

1. Object: represents the persistence property.

2. Version: a subtype of type Object to represent immutable versions of software objects.

3. Component: a subtype of type Version to represent the component decomposition of a
prototype.

4. Top-component: a subtype of type Component to represent prototypes.

5. Step: a subtype of type Version to represent software evolution steps.

6. Top-step: a subtype of type Step to represent top level evolution steps.

7. Designer: a subtype of type Object to represent designer information.

8. Assignment: a subtype of type Object to represent a schedule record.

9. Text-Object: a subtype of type Object to represent software component text.

10.Sequencer: subtype of type Object to generate sequential numbers.

"74

I!
Top level evolution steps and their substeps are represented by instances of the

types Topstep and Step respectively. The steps are represented in the database as a set of

Step object with a sequencer object associated with this set to produce a unique step-id for

each created step. Prototypes and their components are represented by instances of the

types Top-component and Component respectively, and each defined versioned

component has a corresponding Sequencer to keep track of the number of variations

splitted for each component. The designer pool is represented by a set of instances of type

Designer while the schedule is represented by a list of instances of type Assignment. The

set of text files (.spec, .imp, .ps, .graph, and .a) belonging to each component are

represented by instances of type Text-Object. The abstract representations of the different

types are defined in the following subsections.

Object

TextObject Sequencer Assignment Designer Version

Scomponent I step I

subtype top In j

FIGURE 20. Type hierarchy

a. Type Object

The type object is the most general type. All other types are either directly or

indirectly subtypes of type object. All instances of type object are persistent by definition.

This means that entities that are created by an operation persist beyond the lifetime of this

operation.

75

IA

Type: object supertype: None

Properties: persistent

Name: string

Operations:

getObject

putObject

Both of these operations takes an object name as an input and returns a pointer

to an object or saves an object in DDB respectively.

b. Type Version

All evolving objects are directly or indirectly subtypes of the type version.

This type as well as its subtypes are immutable versions of software source objects that

cannot be reconstructed automatically such as source code modules, specification modules,

requirement modules, and evolution steps. Type version has the following abstraction:

Type: version Supertype: object

Properties:

version-id : natural

variation-id : natural

previous-version : version

next-version : version

time-created : time

Operations:

get-previous.version

get_next_version

These two operations are used for history tracking as well as for the merge

process to locate a common base version for a set of merging components. Each of these

operations takes an object name as an input and returns a pointer to the previous or next

version of this object.

"76

A

c. Type Component

This type is the specification of type version for the immutable software

components mentioned in type version above. Each instance of this type represents a frozen

version of a software component.

Type: component Supertype: version

Properties:

created-by name

partof set {component)

subcomponents : set (component)

used-by : set (component)

data : text (represents component data)

-- list of text files (.spec, .imp, .ps, .graph, and .a files)

Operations:

create_component

retrievecomponent

showcomponents

The operation create component t. --.mponent name as an input and

crcates an oL. -- -.- inr.e in the design database (if this component does not exist in

the current working directory of the DDB), it also adds the different text files from the

designer workspace as the data of this object and it also assigns a version and variation

number to the newly created object.The operation show_components is a directory like

listing of the component and its subcomponents, while the operation retrieve_component

includes copying the component to a specified workspace.

IL Type Top-component

top-component is a component that is not part of any other component. This

type is used to represent prototype configurations and to enable distinguishing prototypes

as a separate class to optimize their access time. This separation enables the iteration over

the top-component (s) without having to iterate through all the components to locate only

the top level ones.

77

Name

versionid

variation-id

previous-version

next.version

Component time_created

created-by

part_of

subcomponents

usedby

Data (test files)

FIGURE 21. Component attributes

Type top-component Supertype: component

Properties:

part-of: {)

e. Type Step.

A steps is the evolution history node that has all the informations required to

evolve a software component from one version to the next. Each instance of this type

represents an evolution step or substep, composite or atomic. The type step is a persistent

object.

Type: step Supertype: version

Properties:

primary-input :set (component)

secondary-input : set (component)

78f

step-id

___ primary-input

secondary input

- affected-modules

output

.__ part-of

__ subcomponents

- status

Step required-expertise-level

-- deadline

estimated_duration

- start-time

-- finish-time

priority

Spreceded-by

designer

- date-created

- date_curnent_status

FIGURE 22. step attributes

output set component}

partof :set (step I

status enumeration

required_.expertise_level enumeration

deadline time

79

A
estimatedduration : natural (in hours)

estimatedstart-time time

estimatedfinshtimne time

priority natural

preceded-by set I step)

designer name

date-created : date

dateof currentstatus date

Operations:

create-step

show-steps

show-step-details

update-step

The operation create-step takes a prototype name (with variation and version

numbers) as a base version and a component name as primary input and creates step with

a unique number. The operation update-step takes step number and arbitrary number of the

step attributes, resets the single valued attributes to the given new values and add or delete

a given value to the multivalued attributes. Show-steps operation takes as input an

identifier of a certain category of the steps (such as top, proposed, approved .etc.) in the

database and return a listing of those steps. Show-step-details operation takes a step

number as an input and returns the different attributes of the step.

f. Type Top-step

This type is used to distinguish top level steps from their substeps to enable

the iteration over the top steps without having to iterate through all the steps to locate only

the top level ones.

Type: top-step Supertype: step

Properties:

panrtof: .1

affectedmodules set Icomponent }

80

subcomponents set I step)

Operations:

show substeps (listing of the substeps of the step)

g. Type Designer

This type is used to represent a designer's data in the design database. The

designer's pool is represented by a set of instances of this type.

Designer

Name Expertiselevel Status

FIGURE 23. Designer attributes

Type: designer Supertype: object

Properties:

name: string

expertise-level: expilevel

status: enumeration (busy, free)

Operations:

add-designer

delete-designer

change.expertise-level

change-status

The designer's operations are adding new designer with a specified expertise

level to the DDB, deleting a designer from the DDB, and changing the expertise level or

the status of an existing design team member.

81

S

h. Type Assignment

This type is used to represent the relevant information of assigning a step to

a designer. While the information included in this type may be redundant with respect to

both designer data in the designer's pool and corresponding assigned step. this type

optimize the access time to collect such information. This type also enables saving the

planned assignment where a full schedule can be represented as a list of instances of this

type.

Assignment

Step-id Designer name Estimatedstart Estimatedfinish

FIGURE 24. Assignment attributes

Type: Assignment Supertype: object

Properties:

step-id : natural

designer._name : string

estimatedstart-time : time

estimatedfinshjtime : time

Operations:

createAssignment

deleteAssignment

showAssigrment

i. Type Schedule

An instance of this type represent the full schedule gen- ited by the scheduler

to be kept in the database.

Type: Schedule Supertype: object

Properties:

82

Assignments List (Assignment)

Operations:

createSchedule

deleteScheule

showSchedule

The schedule uses a list as a container class for the assignments to enforce any

ordering required over the schedule assignments.

j. Type Sequencer

Instances of this type are used as persistent counters where needed. An

instance of this type is needed for each versioned object to keep track of the number of

variations for each object. An instance of this type is also used to keep track of the number

of steps created and to be used for steps unique numbering.

Type: Sequencer Supertype: object

Properties:

Value : natural

Operations:

getValue

IncrementValue

This is the only two operations needed on a sequencer and they can be

implemented as one since any time the value is needed it has to be incremented.

k. Type Text-Object

Instances of this type are used to represent different files associated with each

component in the design database.

Type: Text-Object Supertype: object

Properties:

Name :string

Value . Text

Operations:

createTextObject

83

R-retrieveTextObject

W-retrieveTextObject

getTextObjec Name

The operation createTextObject is used to create a text object that has the

name of the input text file and its value is equal to the text of the file. The operations

R-retrieveTextObject and W-retrieveTextObject are used to get the text object from the

database in read only mode or read/write mode respectively. The last optration

getTextObjecName is used to list the names of the text objects included in a component

2. Concurrency Control

Concurrency control is one of the problems in the field of database management

that has received much discussion and many solutions. Most of these solutions are based

on two basic assumptions. First, all the transactions must be executed such that their results

are equivalent to some serial execution of those transactions. Second, objects have a single

value. In some of these solutions old versions are used for a short period of time as a

transient states, but when the transaction completes the values of the old versions are not

retained [85].

In the context of software evolution/development all old versions of an object are

made available via the version control mechanism. This contradict the second assumption

due to the nature of the design database, where a version of an object cannot be modified

but can be read at any time (read-only). This makes it possible for readers and writers to

work on the same object and never conflict. The immediate effect of this is an increase in

concurrency level of the system.

The traditional question of what happens when two steps try to modify the same

object occurs in our system in two cases: first, when the designer/management decides to

explore/start another alternative which automatically splits a new variation of the original

one with the alternate object version attached to it. Second, when two modifications have

to be done to the same object, the serialization is automatically done by the Evolution

Control System, in a higher level of abstraction, which takes care of planning these changes

to be serialized according to a predefined management policies.These policies should not

84

permit starting one of the steps before committing the other one according to the

management constraints such as precedence. and deadlines.

Figure 25 depicts the horizontal view of the graph representation of the relation

between system versions and the corresponding evolution steps. Step Sk is applied to

version Vij of a software object (where "k" is the step number, "i" represents the variation

number anid "j" represents the version number along one variation) producing version

Vij.l. Variations are represented as partial paths in the graph, applying step Sk '_ Vid+l

produces the version Vij+2 on the same variation line. Applying step Sk+2 to Vij~i

produces a new variation i+l with version Vil.j÷2. Applying step Sk+3 to Vij produces

another new variation i+2 with the .'ersion Vi÷2.j+I.

The graph can adso include dependencies between the modified versions and

versions of other objects that are not modified by the step, such as specifications of other

modules. For simplicity linrs of this type are not shown in Figure 25.

Notice that, in case of a split that creates a new variation, it is the order in which

the step is assigned rather than the version number of the base version that decides the

variation number (i. e., Step k+2 created the new variation i+l and Step k+3 created the new

variation i+2 despite the fact that the first is applied to version j+l and the second is applied

to version j). Thus the variation numbers capture the chronological order in which the

variations were created. Step numbers are assigned in increasing order when the steps are

created. Steps can be carried out concurrently and asynchronously, and the order in which

they actually start or complete their implementation phases can differ from the order in

which the steps are added to the schedule.

As for the other shared components of the ECS such as the designer-pool and the

schedule, the modification to the former one is only performed by the design manager while

the later is subject to change through the invoked instances of the designer-interface to ECS

and the manager interface. For these components we rely on the underlying database

concurrency control scheme (Ontos Database in our implementation) to serialize

concurrent access to these components as an atomic transactions.

85

FIGURE 25. The relation between system versions and evolution steps

B. IMPLEMENTATION CONSIDERATIONS

The prototype implementation of the ECS is intended to be on unix system, where

multiple instances of ECS are run concurrently by different users (managers and designers).

These instances of the ECS share the ECS state data stored in the DDB as defined in section

A above by the DDB schema and its Ontos representation defined in Appendix B.

1. Implementing Shared Data for Multiple Users

The shared data by multiple ECS users consists of the evolution graph (evolution

steps and software component versions) the designer-pool data and the schedule. Despite

the fact that the schedule information my be redundant with some of the steps attributes, it

is stored as a separate component to optimize the access to the schedule informations a

collected plan of a project implementation and to enable to relate different scheduled tasks

to each other with respect to some scheduling attributes such as start time or expertise level

and so on. The design database in the ECS implementation consists of two main parts: the

first part is the shared data space where all the ECS state data are stored, and the second

part is the designers work spaces where modification to software components are

performed.

a. Shared Data Space

The shared data space is the repository that keeps all of the verified software

objects (versions or configurations) and their corresponding evolution steps. The versions

in the shared data space are frozen and may not be changed under any circumstances. Any

changes to any of the objects must be done in the context of an evolution step, authorized

86

by the management. and completion of such a step can only add new versions to the shared

data space. The shared data space contains the public releases of the software objects.

Mutable copies of these objects can only be obtained as part of an evolution step controlled

by the Evolution Control System. The relations between the objects in the database are kept

as attributes of each object and the corresponding evolution step.

b. Private Workspaces

Since the data in the shared data space is frozen and may not be changed. the

designers's private workspaces are used for production of new versions of existing objects

or adding new objects to ,xisting software systems which in turn produce new versions of

the software system. A designer's private workspace is protected from updates by other

designers while a step is in progress. This is visible via the other CAPS tools and has no

impact on the observable behavior of the ECS system.

The private workspaces have the following relations with the graph model for

software evolution:

1. There is a 1:1 correspondence between private workspaces and evolution steps. This
means that each designer can only be assigned one step at a time.

2. There is a 1: 1 correspondence between objects in the private workspace and the set of
objects representing the inputs to and the outputs from the step of the workspace
(inputs (s) U outputs (s): where s is the step of the workspace).

3. Only the output objects of the step can have mutable copies in the private workspace.

4. Secondary inputs of the step have immutable copies in the private workspace

The process of copying objects to and from the designer's workspace is done

automatically by the Evolution Control System (ECS), and these objects continue to be

under its control until either all the changes are done and the ECS, triggered by the

commitstep command from the designer, commits them to the shared data space

producing a new version of each modified object (when a mutable version in the private

workspace is committed by the ECS, it becomes an immutable version in the shared data

space), or if the changes are suspended/abandoned then current copies of completed

mutable versions are saved as an attribute to the step for future reference.

87

2. Choice of Languages and Support Systems

As a work done at the Naval Postgraduate School, computer science department,

we do not have much of choice of the language to be used for implementing the ECS

system. needless to say this language had to be Ada. However, the support object oriented

database system is Ontos database (631 [64] that has its interface and schema written in

C++. This adds the burden of having to define an Ada interface package that lets the ECS

Ada program access the shared data in the DDB according to the defined DDB schema.

Ontos DB is a multi-user, distributed object database with a C++ class library interface that

provides a reliable storage facility for C++ objects. It has standard database capabilities and

a special support for objects as well as a set of database and object oriented classes

enhancing the power of the C++ language [641.

3. Software Decomposition and Structure

The Evolution Control System ECS consists of two main modules, the manager

interface and the designer interface. The manager interface includes all the commands

needed to implement the specified behavior of this interface given in chapter III.F and

Appendix A. These commands include show-prototypes, show-steps, show-step-details,

show-schedule, create-prototype, create-step, edit-step, edit-team, approve step,

schedulestep, commit-step, suspend.step and abandon-step. The designer interface

includes the commands needed by the designer to execute the assigned step which are

create.substep, commit.substep and the adminstrative commands such as

show-prototypes, show-steps, show-step-details, and show-schedule. The Ada

implementation of these commands as defined in the functional specification is given in

Appendix C.

C. THE SCHEDULING PROBLEM

Our problem is to schedule a set of sporadic tasks (software evolution steps). These

sporadic tasks have random arrival times, and given deadlines, precedence constraints, and

priority values to indicate the criticalness of their deadlines. Because of the unpredictable

nature of the arrival time of the sporadic tasks, it is very difficult to design a real-time (on-

88

line) system that guarantees that all their deadlines can be met 1341. Morever, each of these

tasks requires certain expertise level, which implies that the system model is a set of M

software designers of different expertise levels (not identical designers). This problem is

similar to that of dynamic scheduling tasks with arbitrary arrival times, deadlines, and

precedence constraints in a multiprocessor system where the processors are not identical.

Hong and Leung 1341 proved that there is no optimal on-line scheduler can exist for

task systems that have two or more distinct deadlines when scheduled on m identical

processors, where m > 1. Scheduling tasks with arbitrary precedence constraints and unit

computation time is NP-hard both the preemptive and the non-preemptive case 1671. Our

problem is even more complicated than both of the above two cases, when contrasted with

the case proven in 1341 we have more than one designer and each step of the step set has its

distinct deadline which is the same conditions for the conclusion reached by Hong and

Leung, in addition, the designers are not of the same expertise level which makes it even

more complicated. In contrast with results of [671 our problem includes arbitrary

precedence constraints between pairs of the steps in the step set to be scheduled in addition

to an arbitrary computation time for each step which makes it even harder than the case of

having unit computation time. These negative results indicate the need for heuristic

approaches solve this scheduling problem.

I. The Scheduling Algorithm

Scheduling a set of tasks to reach a feasible schedule is a search problem, where

the search space can be structured as a search tree. The root of this search tree is an empty

schedule, an intermediate node is a partial schedule, and a leaf node (terminal) is a complete

schedule. Since not all leaves correspond to feasible schedules, it might cause an exhaustive

search to find one, which is computationally intractable in the worst case. Because of the

computational complexity of finding a full feasible schedule in many of the real

applications, heuristic approaches are used.

89

III

L System and Task Model

The task set in the ECS scheduling problem is a variable set of evolution steps

S = -SI. -S2..... SN), where N varies with rime. This set of tasks need to be scheduled to a

set of M designers D = {D1 , D2)...., DM). The designers are of L different expertise levels.

Tasks (steps) are characterized by the following:

"* Estimated processing time tp (Si): a management estimate of the time required to per-
form a step.

"* Deadline d (Si): The time by which a step must be completed

"* Earliest start time EST (Si): the earliest time at which the step can be assigned to a
designer (calculated when a scheduling decision is made).

"* Priority p (Si): An integer value to reflect the criticalness of the deadline of a step.
"* Resource requirement r (Si): required expertise level for performing a step.

"* Precedence constraints given in the form of a directed acyclic graph G = (S, E) such
that (Si, Sj) e E implies that Sj cannot start until Si haZ been completed.

In order to support teamwork, we assume that each step is assigned to a single

designer. This designer must have at least the same expertise level as that of the step. We

also define the earliest start time EST (Si) as the earliest time at which the step can be

assigned to a designer. This time is calculated when a schedulip, decision is made.

Our goal is to determine whether there exists a schedule for executing the

tasks, that satisfies the timing, precedence, and resource constraints, and to calculate such

a schedule if one exists. Since this problem is computationally intractable, we weaken the

requirements to checking whether a feasible schedule can be found within the available

time. Otherwise advise the software manager of the lowest priority deadlines that have to

be canceled (moved to their calculated finish time) in order to get a feasible schedule. This

algorithm should also give the software manager the choice to change other constraints

such as priority, precedence or estimated execution time of the tasks to tune the schedule

each time new evolution steps are to be added to the schedule and a feasible schedule

cannot be reached. It also must check the validity of these changes (e.g. if a priority of a

step is changed it has to be less than or equal the priorities of its predecessors and greater

than or equal to that of its successors).

90

Thus, we need an on-line scheduler that is called when one or more sporadiL

tasks arrive at time t (new tasks in our system may have some of the constraints not definecc

when they arrive to the scheduler) or if the attributes of the currently scheduled tasks

change, to decide if the newly arrived tasks, or the changed tasks, along with unassigned

tasks at time t (scheduled but not started yet), could be rescheduled so that all deadlines are

met. If a feasible schedule is reached the system will continue assigning the tasks to the

designers according to the schedule constructed by the on-line scheduler. Otherwise the

system will try to meet the deadlines of the most important (highest priority) tasks and

suggest changing the deadlines of the least important ones. These suggestions could be

accepted by the manager or he can change other parameters which in turn triggers the on-

line scheduler to recalculate the schedule accordingly.

Changing the attributes of currently scheduled tasks means editing any of the

constraints of the not-started-yet tasks, assigned tasks that are prone to exceed their

estimated execution time (which is a common case in software effort estimation), and the

addition/deletion of designers.

b. A Heuristic Search Scheduling Algorithm

A heuristic scheduling algorithm tries to reach a feasible schedule for a set of

tasks by starting at the root of the search tree, which is an empty schedule, and tries to

extend the schedule with one more task by moving to one of the nodes in the next level of

the search tree until a feasible schedule is reached. The nodes in the next level of the search

tree consist of those tasks that are ready to be scheduled, i.e. the tasks that have all their

predecessors completed at this point or has no predecessors. A partial search path is

extended only if it is strongly feasible.This is because if extending the current schedule by

a task T causes T to miss its deadline then none of all the possible future extensions can

meet the deadline of task T, since starting T later cannot make it finish earlier [67]. To this

point we introduce the following definition:

o Strongly-feasible partial schedule: A partial schedule is strongly-feasible if all sched-
ules reached by extending it by any of the remaining (ready to be scheduled) tasks are
also feasible.

91

If the partial schedule is strongly feasible then a heuristic function is used to

extend the partial schedule. This heuristic function should reflect various characteristics of

the scheduling problem to effectively direct the search to a plausible path. If all the

schedules resulting from extending the current schedule with any of the remaining tasks are

also feasible, the partial schedule is called strongly feasible. The heuristic function is then

applied to every task that is ready to be scheduled. The task with a predefined property of

the heuristic function is selected to extend the current partial schedule (e.g. if we use the

earliest deadline first as our heuristic then we pick the task with earliest deadline of the

tasks that are ready to be scheduled to extend the current partial schedule), otherwise this

search path is stopped because it will not lead to a feasible schedule.

Our heuristic algorithm is based on the heuristic algorithm introduced in [671

and discussed above. The main difference is that the tasks in our problem have precedence

constraints which is not discussed in [67] where the authors deal with a set of independent

tasks. Another difference is that each task has its own deadline rather than a common

deadline for each set of tasks as is the case in [671.

Before describing the details of our algorithm, let us introduce the following

definitions.

"* Pending-step: a step whose predecessors (in the dependency graph) have all been
scheduled (not necessarily assigned yet) and their estimated finish time is calculated.
The step's earliest start time is set to the latest finish time of its predecessors.

"* Ready-step: a pending step whose earliest start time is less than or equal the current
time t.

The following data structures and variables are used by the algorithm:

" Dependency-graph: a directed acyclic graph G = (S, E) such that S = (S1. S2. . . . SN} is
the set of steps to be scheduled, E is the set of edges such that (Si, S) E E if and only if
S, cannot start until Si has completed.

" Indegree: an integer representing the number of the immediate predecessors of each
node (step) in the dependency graph.

" Pending-list: a list holding pending steps sorted in a non-decreasing order of their earli-
est start time.

" Ready-list: a list holding ready steps sorted in a non-decreasing order of the heuristic
function used (e. g., deadlines, earliest start time etc.).

92

Earliest Ava.,able Time (EAT): a vector of M values to represent tic earliest available
times ot w.e resources (designers). EATi is the earliest time when D, becomes available
when the system has only one instance of each resource type (expertise level), e. g.. for
the case of having only three expertise level low, medium, and high and one designer of
each level then EAT = (EAT, EATm EATh). in case of having multiple instances of each
expertise level the EAT is represented as a matrix so that each row represents the Earli-
est Available Times of the different instances of each expertise level.

EAT = ((EAT11 EAT12 .. EATtk)

(EATml EATm2.. EATmr)

(EAThl EATh2 .. EAThp))

where I, m, h are the three expertise levels low, medium, and high

respectively, and k, r, and p are the corresponding number of designers in each level.

The main idea of th-, algorithm is to extend the current schedule by one of the

steps in the ready list. The tasks in the ready list can be seen as independent tasks if we can

define an earliest start time and a deadline for each of them. This is done for the deadlines

by propagating them from the terminal to the root nodes in the dependency graph.

The propagated deadline d'(Si) of a step Si is defined by:

1) d'(Si) = d(Si) if --,3 Sj : Si precedes Sj

or

2) d'(Si) = min d(Si), d'(Sj) - tp (Sj)) V Sj : Si precedes Sj

In 2) above, if there exists some step Sj such that Si precedes Sj then Sj cannot

start until Si has completed. In order to complete Sj's computation before its deadline, the

latest time by which Sj must be started is d'(Sj) - tp (Sj). Then Si's real deadline should be

d'(Sj) - tp (Sj) if it is smaller than d (Si).

As for the earliest start time (EST) of each step. it is adjusted according to the

following:

1) EST' (Si) = EST (Si) if -,3 Sj : Sj precedes Si

or

2) EST' (Si) = max IEST (Si), EST'(Sj) + rp (Sj)) V Sj : Sj precedes Si

93

In 2) above, if there exists some step Sj sut.h that Sj precede% Si then So .iannoi

start until Sj has completed. Since the earliest time that Sj can be completed is EST(Sj) +

tp (Sj) then Si's real EST should be EST'(Sj) + tp (Sj) if it is greater than EST (SI)

The reason for having ý' pending-list and a ready list i1 , tead of having one

ready-list is to give the available , (in_degree = () and EST ',= current time) a fair

chance to compete foi available des..,iers especially when using different heuristic, other

than EST first, since the scheduler isiders only the steps in the ready_ ist.

Our scheduling algontar•i has two different initializatioii procedures. The

first one is used when the system starts from scratch (i.e.. the schedule is empty), while the

second initialization procedure is used when new tasks arrive at the system or some of the

attributes of an existing step is changed. This scheduling algorithm is similar to the hrancn

and bound technique. The strong feasibility check don, before extending the schedule by

another node in the search tree is used instead of the lower bound check, normally used with

branch and bound algorithm, to bound the search in a given search path The alt'.wthm

works as follows:

Initializationpart:

(I) if initial schedule = empty

(2) then

initialize EAT values to TO, and the schedule to empty.

perform a Depth First Search on the dependency graph to:

- initialize the in_degree for each node (number of immediate predecessors).

- propagate deadlines, and

- initialize the ESTs (earliest start time) of the steps that have no EST to Tol,

insert each pending step (its in-degree = 0) into the pending list ordered by its
EST.

(3) else

update the dependency -graph:

- Remove the assigned steps and their corresponding arcs from the dependency
graph

94

- Add the newly arrived steps to the dependency graph (if there is any) check- r
ing for the "acyclic" property of the graph and the compatibilitv of the newly
added steps' priorities with that of their successors and predecessors and warn
the manager of any violation

Recalculate the in.degree of the graph nodes.
Re-initialize the EAT vector (matrix) to the finish time of the step assigned to each
designer and to t for the free designers.
Insert each pending step (its in-degree = 0) into the pending list ordered by its
EST.

end if

Schedule part:

(4) While full~schedule is not reached loop

(5) For all the steps in the pending list:

if EST (S) <= min(EAT) of the corresponding designers then

insert S into the readylist in order of non-decreasing values of the H (heu-
ristic) function used and delete S from the pending list.

(6) end for

(7) While ready jist is not empty loop

(8) if not STRONGLYFEASIBLE to extend the schedule by each of the steps
in the ready-list then

if the backtrack limit is not reached then increment backtrack
counter and backtrack (discard the current partial schedule and
backtrack to the previous partial schedule and extend it by a dif-
ferent step)

else exit (NO-FEASIBLESCHEDULE)

end if

end if

(9) extend the hedule by the step S that has min H

in case of ties, select the step Si with the highest priority, then the step with
max tp(Si)

(10) update the EAT of the assigned designer

(11) update the EST of the immediate successors of S

(12) decrement the indegree of the immediate successors of S

(13) if the in-degree of any of the immediate successors of S - 0

then
insert it into the pending-list in order of its EST,

end if.

(14) delete S from the ready-list

95

(1 5) end while

(16) end while

The STRONGLY-FEASIBLE is a boolean function that works as follows:

FEASIBLE = TRUE

for all the steps S in the ready-list loop

if min (EAT) of the designers of the same or higher expertise level than

level(S) + Estimatedduration(S) > deadline(S)

then FEASIBLE = FALSE

end if

end for

The following are some of the heuristics that may be used with this algorithm:

"* Minimum deadline first (Min.d): H(S) = d (S)

"* Minimum earliest start time first (Min-est): H(S) = EST (S)

"* Minimum laxity first (Min-L): H(S) = d (S) - (EST (S) + tp (S))

"* Min_d + Min_est first: H(S) = W * d (S) + (l-W) * EST (S)

"* In the four cases ties are broken using the priorities of the steps (the highest priority
step starts first). Further ties are broken by selecting the step that has the maximum tp.

The fiust three heuristics are simple heuristics and the last one is an integrated

heuristic. The weight W (0 <= W <= 1), used to combine the two simple heuristics Min-d

and Min-est, can be tuned according to the criticalness of the deadlines of the available

steps. This means if the deadlines are not critical then W can be set to 0 which leads to

Minest heuristic that is the best for team work to assign tasks to designers according to

their earliest start time making a full use of the human resources. On the other hand the

value of W can be chosen to favor the deadline heuristic or some way in between to meet

the critical deadlines and make the best use of the human resources (designers) available.

The backtracking limit is left open in the cases where the number of tasks is

relatively small, and is limited otherwise. In the cases where no feasible schedule is reached

either due to the absence of a feasible schedule for the given set of tasks or due to reaching

the backtracking limit of the algorithm without reaching one, an algorithm for adjusting the

96

IU

deadlines is used. This enhancement to the -1lgorithm is presented in section c. This valid

schedule can be improved on by using the simulated annealing technique described in

section d.

c. Algorithm for Adjusting Deadlines

A valid schedule is a schedule that satisfies the precedence constraints of its

tasks but allows some of the tasks to miss its deadlines. Different heuristics can be used to

guide the search process to a plausible path that minimizes the number of tasks that must

miss its deadlines and in the mean time supports team work by scheduling every available

task as soon as the earliest available time of the task is reached. This in turn minimizes the

time a designer has to wait for a task to be assigned to him/her.

This algorithm uses almost the same steps as in the previous search algorithm

uses with two main differences. The first difference is that: there is one readylists for each

of the L expertise levels. The main reason for having the different levels of ready-lists is to

guarantee that no lower task is assigned to a higher level designer while there is a task of

the designer's level ready to be assigned (recall the requirement that the expertise level of

the designer must be at least the same as that of the assigned task). The second difference

is that when failing the stong feasibility check for extending the schedule by another task,

a new deadline is suggested for the task that does not meet its deadline (equal to its

calculated finish time). Upon accepting this value by the manager the schedule is extended

to the next level and so on until a valid schedule is reached.

The Proposed deadline-adjusting scheduling algorithm works as follows:

initialization part:

(1) if initialschedule = empty

(2) then

initialize EAT values to TO, and the schedule to empty.
perform a Depth First Search on the dependency graph to:

- initialize the in-degree for each node (number of immediate predecessors),

- propagate deadlines, and

- initialize the ESTs (earliest start time) of the steps that have no EST to TO.

97

III I

Insert each pending step (its indegree 0 0) into the pending list according to its
EST.

(3) else
update the dependency-graph:

- Remove the assigned steps and their corresponding arcs from the dependency
graph.

- Add the newly arrived steps to the dependency graph (if there is any) check-
ing for the "acyclic" property of the graph and the compatibility of the newly
added steps' priorities with that of their successors and predecessors and warn
the manager of any violation.

Recalculate the in.degree of the graph nodes.

Re-initialize the EAT vector (matrix) to the finish time of the step assigned to
each designer and to t for those free designers.

Insert each pending step (its indegree = 0) into the pending list ordered by its
EST.

end if

schedule-part:
(4) While full_schedule is not reached loop

(5) For all the steps in the pending list:

if EST (S) <= min(EAT) of the corresponding designers then

insert the step into the corresponding ready-list according to the H
(heuristic) function used and delete it from the pending list.

end if

(6) end for

(7) For all ready lists from higher level to lower .level loop

(8) While ready-list is not empty loop
(9) if not FEAS1I3LE to extend the schedule by any of the steps in the

ready-list

then suggest a new deadline for the infeasible step assignment

if the suggestion is not accepted then exit, end if.

end if

(10) extend the schedule by the step S that has min H
(11) update the EAT of the assigned designer

(12) update the EST of the immediate successors of S

(13) decrement the in-degree of the immediate successors of S

(14) if the in-degree of any of the immediate successors of S = 0
then

insert it into the pendingjist,

98

end if.
(15) delete S from the ready-list

TO = main (EAT) of the designers of the same or higher expertise
level than level(ready-list)

(16) for all the steps S in the pending list such that expertise level (S) =
level (ready-list):
if EST (S) <= TO

then
insert S into the readyjlist according to the H function used
and delete it from the pending list.

end if
end for

end while

if not FEASIBLE then exit end if
(18) end for

if not FEASIBLE then exit end if
(19) end while

This algorithm has the property that a designer will never be left idle when there

is a ready step that the designer is qualified to do. This is because inserting steps into ready

list and their assignment to designers are triggered by the availability of designers as is the

case in statement 5, 10, and 15.

As an example to illustrate how this algorithm works, assume we have the same

example discussed in the typical scenario in chapter 3 as represented in Table 10. and the

corresponding dependency graph in Figure 26. The resources in this example are three

designers dl, d2, d3 with expertise levels H, M, L respectively.

TABLE 10. THE STEPS TO BE SCHEDULED AND THEIR ATTRIBUTES

step # 2 3 4 5 6
est(S)
tp(S) 7 6 3 6 5 4
d (S) 18 18 18 22 22 20

predecessor (S) I I 2.4

Successors (S) 2,3 5 5
r (S) M M M H H L

99

I

Now we follow the algorithm step by step to see how it works:

(1) The EAT vector is initialized to zeros EAT = (0, 0, 0) for dl, d2, d3 respectively.

FIGURE 26. The dependency graph

(2) Table 11 shows the new deadlines after propagating them from the terminal nodes
all the way up to the corresponding root nodes and initializing the in-degree and the
EST.

TABLE 11. THE STEPS ATTRIBUTES AFTER PROPAGATING THE DEADLINES.

step# 1 2 3 4 5 6
est(S) 0 0 0 0 0 0

Vps) 7 6 3 6 5 4

d(S) 11 17 18 17 22 20

predecessor (S) 1 1 2.4

Successos (S) 2,3 5 5
r(S) M M M H H L
indegree (S) 0 1 1 0 2 0

Using H = d (S)

(3) The steps with inudegree= 0 and EST =0 are inserted in the ready-list Now the
ready-list = I SI, S4, S6) according to their deadline values.

(4) since the initial partial schedule is empty, it is feasible to schedule any of the three
steps in the readyjlist without missing any of their deadlines.

(5) The partial schedule is extended by S I (inserting the steps in a non-decreasing order
of their deadlines into the readyjlist makes no need to apply the H function, since the
step on top of the queue has the min deadline), and S I is removed from the readylist.
The EAT is updated: EAT = {0, 7, 0), the in-degree of steps S2, 53 is decremented to 0.
The EST(S2) and EST (S3) are set to 7.

(6) Since a feasible full schedule is not reached yet we loop back to step 3. Table 12
reflects the changes after first iteration.

100

U
(7.3) S2, S3 have their indegree = 0. but their EST > min (EAT). Now the ready_list =

JS4, S6)

(7.4) The partial schedule is strongly feasible if extended by any of the steps in the
ready-list

(7.5) The partial schedule is extended by 54, it is removed from the ready-list, and EAT
is updated EAT = (6, 7, 0, the indegree of 55 is decremented, and the EST (55) is set
to 6.

TABLE 12. THE EFFECT OF THE FIRST ITERATION

step # 1 2 3 4 5 6

est(S) 0 7 7 0 0

tp(S) 7 6 3 6 5 4

d (S) 11 17 18 17 22 20

pr•decessor (S) 1 1 2.4

Successors (S) 2,3 5 5
r (S) M M M H H L

indegree (S) 0 0 0 0 2 0

(7.6) Since a full feasible schedule is not reached yet we loop back to step 3. Table 13

reflects the changes after second iteration.

TABLE 13. THE EFFECT OF THE SECOND ITERATION

step# 1 2 3 4 S 6
est(S) 0 7 7 0 6 0

Tp(S) 7 6 3 6 5 4

d (S) 11 17 18 1 22 20

predecessor (S) 1 1 2.4

Successors (S) 2.3 5 5
r(S) M M M H H L

in-degree (S) 0 0 0 0 1 0

(8.3) no new ready steps yet. The ready-list = (S61
(8.4) The partial schedule is strongly feasible if extended by any of the steps in the
ready-list
(8.5) The partial schedule is extended by 56, it is removed from the ready-list, and EAT
is updated EAT = {6, 7, 4).

(8.6) Since a full feasible schedule is not reached yet we loop back to step 3. Table 14
reflects the changes after third iteration.

101

(9.3) Now the ready-list is empty, and no full schedule is reached, the time is advanced
to max(min (EAT), min (EST (pending..ist)))= 7, both S2 and S3 are ready and
inserted into the ready list according to their deadline values. Now the ready-list = (52,
S3)
(9.4) The partial schedule is strongly feasible if extended by any of the .-teps in the
ready jist

(9.5) The partial schedule is extended by 52, it is removed from the ready-list. and EAT
is updated EAT = (6. 13, 4). The indegree of S5 is decremented to 0, and its EST is
updated to 13.

TABLE 14. THE EFFECT OF THE THIRD ITERATION

step# 1 2 3 6
ea(S) 7 7 [n,.• 6

Ip(S)63
d(S) 17182

predecess) I () 24
suc.e~ss•(s M o •s.: , .

TABLE IS. THE EFFECT OF THE FOURTH ITERATION

step# 2 3 14$6

dP(S) 3•i~ , 5 •

d (S)0 1

(9.6) Since a full feasible schedule is not reached yet we loop back to step 3. Table 16
reflects the changes after fourth iteration.

(10.3) no new steps to be inserted into the ready-list. Now the ready-list = {S3)

(10.4) The partial schedule is strongly feasible if extended by any of the steps in the
ready-list

102

fm

TABLE 16. THE EFFECT OF THE FIFTH ITERATION

step # 1 2 3 4 5 6
est(S) 13

rp(S) 5
d (S) 22
predecessor (S) 2,4

S uccesso rs (S) ,
r(S) H
in_degree (S) • . 0

(10.5) The partial schedule is extended by S3, it is removed from the ready-list, and
EAT is updated EAT = (10, 13, 4).

(10.6) Since a full feasible schedule is not reached yet we loop back to step 3. Table 16
reflects the changes after fifth iteration.

(11.3) Again the readyjlist is empty, the time is aavanced to 10 then to 13 where S5
becomes ready and inserted into the ready list. Now the readyjlist = (S5)

(11.4) The partial schedule is strongly feasible if extended by any of the steps in the
ready list

(11.5) The partial schedule is extended by S5, it is removed from the ready-list, and
EAT is updated EAT = (18, 13, 4).

(11.6) Since a full feasible schedule is reached the algorithm stops. The resulting sched-
ule is shown in Table 17.

TABLE 17. THE RESULTING SCHEDULE

step # designer start time finish time
SI d2 7T T)7
S2 d2 TO+7 TO0+13

S3 d I TO+7 7T+I0

S4 dl TO TO+6
S5 dl T0+13 T0+18
S6 d3 TO Tu+4

103

V. EVALUATION AND VALIDATION

A. COMPLEXITY ANALYSIS

Both of the two algorithms introduced in Chapter IV.C.I.b and IV.C.l.c have a total

of n steps, where n is the number of the tasks to be scheduled. The complexity of each step

is determined by the complexity of the computation done to determine strong feasibility

and the complexity of H function evaluation. The strong feasibility calculation is linearly

proportional to the number of the steps in the ready list. This number depends on the

connectivity of the dependency graph which is n in the worst case. The H function

computation is done simply by inserting the ready steps into the ready list(s) in order of

their H function which has the order of (log n) in the worst case if we use a heap data

structure for the ready lists.

The overall worst case complexity of the algorithm is:

n+(n- 1)+(n-2)+..+2=O(n 2).

The backtracking in of the algorithm in Chapter IV.C. L.b can be limited to a constant

number which does not affect the complexity analysis. In our expermintal results we found

out that the number of backtracking is at most proportional to n with a small constant (0.75).

It is also worth noting that the number of steps in the readyjlist is linearly proportional to

the remaining ready unassigned steps which is always less than or equal to the number of

the remaining unassigned steps.

B. Simulation Study

The main goal of a scheduling algorithm is to find a feasible schedule for a set of tasks,

if one exists. Clearly, a heuristic scheduling algorithm is not guaranteed to reach such a

schedule. However, one heuristic algorithm is favored over another, if we have a number

of task sets that known to have feasible schedules, the first is able to find feasible schedules

for more task sets than the second. To take this approach, we have to come up with a

number of task sets, each of which is known to have a feasible schedule. Unfortunately,

only an exhaustive algorithm can find out whether an arbitrary task set can be feasibly

scheduled.

104

Given m different designers, the complexity of an exhaustive search to find a feasible

schedule for n tasks in the worst case can be O(mn * n!). This is why we take the approach

taken by Ramamritham et. al. [Ref. 67] which is using a task generator that can generate

schedulable task sets where the number of tasks in each set can be arbitrarily large without

adding much complexity on the task generator. Additionally, the tasks are generated to

guarantee the total utilization of the available designers. These task sets are then input to

the scheduling algorithm, that has no knowledge that these sets are schedulable. The

parameters used to generate task sets are:

1. The minimum duration of a task, MinD.

2. The maximum duration of a task, Max-D.

3. The schedule length, L.

The task set generator starts with an empty EAT matrix, it then generates a task by

selecting one of the n designers that have the earliest available time and then randomly

chooses the task duration between the minimum duration and the maximum duration. The

task generator then increments the EAT of the selected designer by the value of the task

duration. The task generator generates tasks until the remaining unused time units of each

designer, up to the schedule length L, is less than the minimum duration of a task, that

means no more tasks can be generated for this designer within the given schedule length.

The deadline for each task is chosen randomly between the task's shortest completion

time Tsc and (I +F) * Tsc, where F is a parameter indicating the tightness of the deadlines,

and is related to the loading factor of each set of designers of the same expertise level. If F

is 0, the scheduler must be able to find the same schedule as that found by the task generator

in order to reach a feasible schedule. As the value of F is increased it is obvious that the

scheduler has a better chance to find a feasible schedule for the task set.

1. Simulation Method

In our simulation study, N task sets are generated, where each set is known to be

schedulable according to the task set generation procedure discussed above. Performance

of different heuristics are compared according to how many of the N feasible task sets are

105

found schedulable when the heuristics are used [Ref. 67). We use the same metric used in

[Ref. 67] which is defined as:

S
SR F4 . where s is the number of schedulable task sets found by the heuristic

algorithm, and N is the total number of task sets.

The loading factor for the designers is different according to their expertise level.

we assume that the designers are of three different expertise levels High, medium and low,

and a step can be assigned to a designer that has at least the same expertise level as that

required by the step. This assumption make the loading factor varies for the designers in

different levels as defined below.

For high level designers we define the loading factor as follows:

X TphLUh =
(Max (di) - To) x Mh

where LFh is the loading factor for high level designers, Tph is the estimated duration for

a high level task, To is the initial start time for scheduling the tasks, Mh is the number of

available high level designers and di is the deadline of task i.

For a medium level designer we define the loading factor as follows:

X Tpm
LUm = :P

(Max (di) - To) x (Nm +Nh - Nh x LFh)

• Tpm
U~m =:P(Max (di) - To) X Mm + (1 - LFh) (Max (di) - To) x Mh

where LFm is the loading factor for medium level designers, Tpm is the estimated duration

for a medium level task and Mm is the number of available medium level designers.

106

For a low level designer we define the loading factor as follows:

LFt
P

(Max (di) - To) X NI + (I - LFm) (Max (di) To) X (Nm + Nh - Nh X LAh)

LFI --

(Max (di) - To) (N--NA (LFh +FUm - LFh X LFm) - Lm X Nm)

where LFI is the loading factor for low level designers, Tpl is the estimated duration for a

low level task and Ml is the number of available low level designers.

2. Simulation Results

The system, in our experiment, consists of three designers, one of each expertise

level high, medium and low. Tasks durations are randomly chosen between Min-D (2) and

MaxD (20). The number of task sets generated is 50, and each task set has between 28 and

31 tasks. We present the results as shown in Table 18. and in plot form in Figure 27 where

the success ratio SR is plotted on the Y-axis and F on the X-axis (F is related to laxity).

Simulation parameter is F to measure the sensitivity of each heuristic algorithm to the

change in laxities.

TABLE 18. Relation between Success Ratio (SR) and Laxity (L)

Laxity (F) 0.0 0.1 0.2 0.3 0.4 0.5 I 0.6 0.7

Heuristic Search 100 100 100 100 100 100 100 100
Min.D 6 14 14 40 70 72 86 100

Min-s 0 0 0 0 8 10 10 22
Min_D + MinS 0 0 0 0 0 0 8 16

Min_L 0 0 0 0 0 0 8 10

As can be seen from Figure 27 the greedy heuristics Min_D, Min_S. MinD+

MinS and MinL perform poorly due to the dependency relations between the tasks. We

found that the heuristic search algorithm have a success ratio of 100% even when the

deadlines are very tight (F=O). It is worth noting that this excellent performance by the

107

LI

SR Heuristic Search
100

90_

80-

70- Mini)

60-

50

40-

30-

20 - MinS

10 _ MinD+MinS
MinL

I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 F

heuristic search algonthm is obtained with unlimited backtracking. This leads us to study

the effect of limiting the backtracking.

Instead of trying different backtracking limits and studying their effects on the

performance of the algorithm, we do it the other way around by counting how many times

the algorithm backtracks to get a feasible schedule given tihe different task sets. The results

is shown in Table 19 where the number of backtracking is represented as a percen:age of

the total number of tasks in a task set. The results plotted in Figure 28 shows that the

backtracking limit in the worst case (tightest deadlines: F--0) is approximatly 0.6 N, where

N is the number of tasks in a task set, and this limit decreases :'gnificantly as the deadlines

are relaxed.

FIGURE 27. Relation between Success Ratio (SR) and Laxity (L)

108

TABLE 19. NUMBER OF BACKTRACKING (AS PERCENTAGE OF N) AND LAXITY (L)

Laxily (F) o0.0 10.1 1 02 0.3 10.4 0.5 0.6 0.7

backuacking # .57 .27 .16 .075 .034 .012 0.0 0.0

.7_
(number of tasks)

n .6-

.5-

.4

.3

.2

.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIGURE 28. Limiting Backtracking

C. DEVELOPMENT OF TEST CASES

To evaluate the ECS system and its proposed functionality, our test cases are designed

to show that the ECS realizes the two main claims; 1) The ECS provides automated support

for changes in the plan during the execution of the plan. 2) It provides automatic decision

support for planning and team coordination. We show that the ECS system realizes these

two main issues by tailoring the test cases to answer a set of questions showing the fine

details pertaining to both of these issues. The set of questions are as follows:

1. Does the ECS support incremental planning of new evolution steps as they become

available?

109

2. Does the ECS respond on the fly to changes in the plan (the attributes of the existing
steps and the changes in the design team members) reflecting their effects on the cur-
rent plan (schedule)?

3. Does the ECS automatically determine change consequences? (calculates the
affected modules (components) by each change (step) needed for propagating the
change consequences as well as calculating the set of secondary inputs needed to
perform the required change)

4. Does the ECS automatically guarantee the consistency of the project database? (cre-
at,. a substep for each affected module by the proposed top step and include it in the
plan for implementing the change and restrict the commitment of the top step by the
completion of all its substeps)

5. Does the ECS support automatic VCCM? (determines and saves the version and
variation numbers of the outputs of committed steps and generates a new system
configuration at the commitment of each top level evolution step?)

6. Does the ECS support parallel multisystem evolution?

In this section we run similar scenarios to those introduced in Chapter Ul.F as our test

cases for the evaluation and validation of the ECS system performance. During the test

cases we indicate the answers to the different questions presented above.

The systems we are evolving are called "c3i-system" and "fishies" where simplified

block diagrams of their decomposition are shown in Figure 29 and Figure 30 to make it easy

to follow the different cases. The C3i-system is a Command, Control and Communication

information system developed at the CAPS lab. The fishies system is fish farm control

system also developed in the CAPS lab. Notice that thick arrows indicate both "partof"

and "used-by" relationships and the thin arrows indicate only the "used-by" relationship

among the system components.

The set of initial designers are: "badr" with expertiselevel "low", "brockett" with

expertise-level "medium" and "dampier" with expertise-level "high".

In the following sub-sections we follow a typical scenario for evolving the two

systems mentioned above indicating in each subsection the ECS system features

demonstrated.

110

W!U
R

- - -

Ii H
W1:I

A d. .

en rz

- iS
FIUR 29 ipiidvrso f.iSse

I
I. Determining Change Consequences

In this section we show how the creation of a step with a given primary input

automatically generates the modules affected by this step as well as the secondary inputs

needed to perform this step.

1. Starting with the initial configuration of "c3i-system 1: 1" (variation number I

and version number 1), we create three steps: first step with primary input
"c3iLsystem.sensor._interface.spec.psdl", second step with primary input

"c3iLsystem.spec.psdl", third step with the primary input

"c3i_system.userinterface.manageuserinterface.imp.psdl". As soon as the manager

clicks the apply button for creating a step the ECS assigns a unique number to it and

generates the affected modules of this step.

As a result of creating first step, the ECS assigns it a unique number, 1 in this case,

and generates the modules affected by this step which are "c3iLsystem.imp.psdl and

c3i-system.sensor interface.imp.psdl". The result of creating the second step is assigning

it the unique number 2 as its step-id and generating the affected module by the step which

is "c3iLsystem.imp.psdl". Finally the result of creating the third step is assigning it the

unique number 3 as its stepid and generating its affected modules which are "none" in this

case because implementation modules do not affect any other modules and the ECS also

generates its secondary input which is
"c3i_system.userinterface.manage-user.interface.spec.psdl". Notice that secondary

inputs generated in the first two steps were none because the primary inputs in both cases

were specification modules that have no secondary inputs yet since we did not have the

requirement modules in our database yet (planned to be added in our future work).

2. Two more steps are created starting with initial version of"fishies 1:1" (the fish

farm control system). The first step with primary input

"fishies.ControlwaterFlow.spec.psdl" is automatically assigned the number 4 and the

two modules "fishies.imp.psdl and fishies.Control-waterFlow.imp.psdl" are generated as

its affected modules. The second step with primary input "fishies.Display-Status.imp.psdl"

is automatically assigned the number 5 and generates no affected modules and the ECS

112

generates "fishies.DisplayStatus.imp.psdr" as its secondary input. Images of the ECS

screens for the details of the created steps and their automatically generated attributes

(affected modules and secondary inputs) are presented in Appendix D Figure 35, Figure 36.

Figure 37, Figure 38, and Figure 39.

Notice that: Creating a step automatically generates the affected modules by the

step as well as the secondary inputs used by the primary input of the step. (answering

question 3).

2. Enforcing Change Consequences for Global Consistency

In this subsection we show how the ECS, after the manager approval of a step,

will automatically create a substep of the approved step for each affected module by the

step. This is to guarantee that all the change consequences are considered as part of the

original change and, as we will show later, that completing all the substeps of top level step

is enforced as a condition for the completion of the top step.

The manager reviews the created steps, adds the deadline, priority, and expertise

level for each step, then he decides to approve steps 1, 2 and 4. The result of approving step

I is creating three substeps with the unique numbers 6, 7, and 8. Step 6 has the primary

input "c3iLsystem.sensor-interface.spec.psdl" which is the primary input of step 1, that is

because step I is now a composite step and will only be used for controlling and enforcing

the completion of its three substeps as a condition for-its completion. Step 7 has the primary

inputs "c3i.system.imp.psdl" and its secondary inputs are automatically generated (the

spec component of c3iLsystem and the spec components of its three children as shown in

Figure 42 in Appendix D). Step 8 has the primary input

"c3i_system.sensorjinterface.imp.psdl" and it has the spec of the same component and the

specs of its two children as its secondary inputs as shown in Figure 43 in Appendix D). Both

of steps 7 and 8 automaLt,,ally have step 6 as its predecessor, since the results of step 6 are

113

the basis for the changes required by them (the output of step 6 is a secondary input for both

steps 7 and 8).

1fishies.Conuol-water._Flow.spec-psdl. 1. 1

'V fishics.Counrol~water...Flow.imp.psdl1.1.

V~ g* fishies.AdjusLDrmain~spec.pd..
fishics.AdjustDrain imp.psdl.l.1

1 oR.

fishies.Displsy...Swu.spec.psdi.1 .1

fishies.Adisly..ustj~eiMp.nsdl. 1. 1

"c3L~~~~~~fsysterntolFede.specpslan"ciyseip.psdl" repctvl whr1tp9prcdsse

114

10. Approving step 4 also creates three substeps 11, 12, and 13 with the primary inpt-ts and

secondary inputs shown in Figure 48, Figure 49, and Figure 50 in Appendix D. Step : 1

precedes both of steps 12 and 13 as its the basis for their changes.

It is worth noting that all the substeps inherit the deadlines, expertise-level and

the prioritie3 of their top level steps as shown in the corresponding figures of the screen

images of the details of the steps in Appendix D.

Notice that: Approving a step creates a substep for each affected module by the

proposed top step. The newly created steps are atomic and inherits the status "approved"

of their top steps besides their attributes (deadlines. prnorities, and expertiselevel).

(answer for question 4).

3. Incremental Planning

I. The manager enters an estimated duration for the substep from 6 -13 using the

editstep command. The values entered are 6, 4, 5, 7, 3, 6, 5, and 4 hours respectively.

2. The manager starts scheduling the steps staring with step 1(related to

c3i-system project). Clicking on "schedule step" option in the manager's menu and

entering the step number I, the system outputs the following schedule for the three substeps

of step I:

STEP ID S LEVEL DRAME STAR-TTIM rINSH TIME

6 MEDIUM brockett 0 6
8 MEDIUM dampier 6 10
7 MEDIUM brockett 6 11

Confirmation required to save the schedule in DDB. Ansver(Y/N): y

3. As soon as the manager confrms the output of the scheduler, the ECS saves it

in the design database replacing the hours time units for startutime and finishtime with real

dates and time of day, as captured from the showschedule screen below:

6 11/06193 08:32 1/06/93 14:32 brockettS 11106193 14:32 11107193 10:32 dampier
7 11/06/93 14:32 11/07/93 11:32 brackett

115

The ECS also sends an E-mail message to brockett informing him about his

assignment.

4. Next, the manager schedules step 4 (related to the fish farm project). Clicking

on "schedule-step" option in the manager's menu and enters the step number 4, the ECS

outputs the following updated schedule.

STEP IM S LEVEL D NAM STA~RT Tfl FINISH TnhE

11 LOW badr 0 6
12 LOW badr 6 11
7 MIUM dampier 6 11
8 MEDIUM brockett 6 10
13 LOW brockett 10 14

Confirmation required to save the schedule in DDB. Answer(Y/N): y

Notice that step 6 does not show in the output of the scheduler because it is

already assigned to a designer and the ECS does not give the scheduler the flexibility to

change the assignment for step 6 to save the work done on that step. However step 6 still

appears in the collective schedule saved in the design database as shown below.

8 11/06193 14:32 11/07/93 10:32 brockett
11/06/93 14:32 11/07M93 11:32 dampier

11 11/0693 0:36 I/06/93 14:,36 badr
12 11I06&93 14:36 11107/93 11:36 badr
13 I/07193 10:36 11/07/93 14:36 brockett

One more feature of the scheduler is assigning the ready step 11 to badr right away

since he is free at the time the step is scheduled for him and sends him an Email informing

him about his assignment as shown below.

Notice that the time the Email message is sent to designer badr is the same as the

start time of his assignment in the schedule, because designer badr is free at the time step 4

is scheduled.

Before scheduling step 2 the manager enters step I as predecessor of step 2

because their substeps (step 7 and step 10) are modifying the same component. This

modification automatically makes step 7 a predecessor of step 10, which prevents the start

of step 10 until the completion of step 7.

116

Tron badr Sat Nov 6 08:36:54 1993
Return-Path: <badr >
Received: from suns7-caps.cs.nps.navy.mi1. (suns.cs.crps.navy. mi)

3. navy. mil (4.1/SMI-4.1)
id M06828; Sat, 6 Nov 93 08:36:54 PST

Date: Sat, 6 Nov 93 08:36:54 PST
From: badr (salah badr)
Xessage-Id: <931 061636.AO06828@taurus. cs.nps. navy. nil>
To: badr
Status: R

You have been assignsid the step no: 11

26un
Using the same command as in 4 above the manager schedules step 2. The

resulting output of the scheduler is shown below as a screen image:

SITEPID S LEVEL D-NMK SThRT-TINE FIN! SH-TM
---- ------ ---------- ---------- ----------

9 HIGH dumpier 0 7
12 LOV badr 6 11
8 MEDIUM brockett 6 10
7 MEDIUM dampier 7 12
13 LOW brockett 10 14
10 HIGH dampier 12 15

Confirnation required to save the schedule in DDB. Answer(Y/N): y

Notice that step 6 and I I do not appear in the output of the scheduler because they

are already assigned, however they still appear in the schedule in the DDB as shown in the

screen image of the saved schedule below. Also an email message is sent to designer

dampier informing him about his assignment.

6 11108/93 08"32 IV106793 14:32 brockett
9 11106/93 14.32 11/07/93 10:32 brockett
7 11/06/93 15:45 11/07/93 12:45 dampier
11 11/06/93 08:36 11/06/93 14:36 badr
12 11106/93 14:36 11107193 U36 badr
13 11/07/93 10:36 11/07/93 14:36 brockett
9 11M06/93 08:45 11/06/93 15:45 dampier
10 11/07/93 12:45 11/07193 1M:45 dampier

Notice also that step 10 is scheduled to start after both step 7 and 9 (its

predecessors) scheduled finish times.

117

As a conclusion of this subsection, we have shown that: i) The ECS incrementally

schedules the steps as soon as the manager decides to do so. 2) Preserves the precedence

between the steps and meeting their deadlines when it is feasible to do so. 3) Ensuring there

is no the case that a designer is idle and there is a ready step he can do and not assigned

to him. 4) automatically informs each designer of his due assignment.

4. Changes in the Plan

Possible changes in the plan include the changes in the attributes of existing active

steps such as deadlines, priority, precedence, estimated duration or even adjusting the

affected modules and secondary input as well as suspending or abandoning any of the steps

which may affect the plan (schedule). Another possible changes are the changes in the

designer pool by adding, deleting or changing the expertise level of a designer. As an

example of these changes we will examine changing the estimated duration of some of the

steps either by an early commit of the step or increasing the estimated duration of another

step. We will also examine the effects of suspending a step and deleting a designer.

a. Early Commit of a Step

Now designer brockett finishes his work on step 6 earlier than planned (for

the sake of the test example) and commits his step. His commit command saves his changes

to the design database creating new version of its input and automatically assigns it a

version and variation numbers (variation I and version 2 in this case). This also triggers the

scheduling mechanism to find his next assignment and adjust the schedule accordingly as

shown in the screen image of the updated schedule below.

8 11/06/93 09A6 1108/93 13:46 brockatt
7 11/0/93 13:46 11/07/9310:46 brockett
11 11/06193 03:36 11/06/3 14:36 badr
12 11/06/93 14:36 11107/93 11:36 badr
13 11/06/93 15:46 11/07/93 11:46 dampier
9 11/06193 08:45 11/06/93 15:45 dampier
10 11/07/93 11:46 11/07193 14:46 dampier

As shown in the schedule above step 6 is removed from the current schedule.

Designer brockett gets his next assignment which is step 8. The status of step 6 is changed

118

to "completed", and its finish time is set to 11/6/93 9:46 as shown in the screen image of

the details of step 6 in Figure 51 in Appendix D.

Notice that the availability of designer brockett earlier affected which

designer does which step for steps that are scheduled but not yet assigned. Now step 7

which was scheduled before for dampier is scheduled to brockett since it requires his

expertise level and he should be available to perform this step before its deadline. This also

changed the planned assignment for dampier from step 7 and 10 to steps 13 and 10. As a

result the scheduled finish times for step 2 and 4 (and their substeps) is improved (become

earlier than before committing step 6).

If we look at the status of the different steps in the system after the

commitment of step 6 (using the command show-steps with option "all") we notice that

step 6 is completed while steps 8, 11, and 9 are assigned which automatically makes the

steps 1, 2, and 4 have the assigned status (according to the relations between top steps and

their substeps defined in chapter 3 and specified in Appendix A. The rest of the steps

(except step 3 and 5) are scheduled with estimated start time as indicated in the sch:dule.

Step 3 and 5 are still in the proposed state.

stepset has 13 items.

5, Status: proposed
6, Status: completed
7, Status: scheduled
1, Status: assigned
9, Status: assigned
U, Status: assigned
12, Status: scheduled
3, Status: proposed
4, Status: assigned
8, Status: assigned
10, Status: scheduled
2, Status: assigned
13, Status: scheduled

119

A

b. Increasing Estimated Duration of a Step

According to the schedule step I I which is assigned to designer badr is due

to complete at 11/6/93 14:36, but he is asking to extend the estimated duration by 2 more

hours. Now the Manager edits the estimated duration of step I I to be 8 hours instead of 6

using the edit step command from his menu. The result of this change is reflected

automatically on the schedule as shown from screen image of the new schedule below.

8 11/0693 09:46 111 3/93 13:46 brockftt
7 11/06/93 13:46 11107193 10:46 brockett
11 11/06193 08:36 11/06/93 16:36 badr
12 11/06/93 16:36 11/07/93 13:36 badr
13 11/06/93 16:36 11/07/93 12:36 dampier
9 11/06/93 08:45 11/06/93 15:45 dampier
t10 11/07/93 12:36 11/07/93 15:36 dampier

Notice that the finish time of step 11 is changed to be 16:36 instead of 14:36

in the previous schedule, and accordingly designer badr's next assignment is shifted to start

at 16:36.

c. Suspending a Step

Now according to a management decision step 4 has to be suspended because

the fish farm owner has a budget problem and cannot afford this change now but he will go

with the other change proposed by step 5.

The manager uses the suspend step command to suspend step 4 which

automatically takes its substeps (11, 12, and 13) out of the schedule and their status is

changed back to approved. The screen image of the updated schedule after suspending step

4 is shown below.

7 11/06/93 09:46 11/06/93 13:46 brockiett
8 11/06/93 13:46 11/07/93 10:46 broclwtt
9 11/06/93 08:45 11/06/93 15:45 dampier
10 11/07/93 10:47 11/07/93 13:47 dampier

because of suspending step 11 (pan of step 4), an E-.mail message is sent to designer back

informing him that his step is suspended as shown below.

120

rom 6adr Sat Nov 6 11:47:52 1993
Return-Path: <badr>
Received: from suns7-caps. cs. rps. navy. ail (suns7. cs. nps. navy. ail)
pr. navy. ail (4. I/SMI-4. 1)

3d AA8OSO; Sat, 6 Nov 93 11:47:46 PST
Date: Sat, 6 Nov 93 11:47:45 PST
From: badr (salah badr)
Message-Id: <9311061947. MA0800S0taurus. cs.nps.navy. ail>
To: badr
Status: R

Your current assigned step: 11 has been Suspended...

0

Now the manager approves step 5, which automatically creates one substep

with the unique number 14. The manager adds an estimated duration of 6 hours to step 14

using the edit step command, then using schedule step command from his menu schedules

step 5 which automatically adds its atomic substep 14 to the schedule and assigns it to

designer badr who is idle at this point. The screen image of the updated schedule is shown

below.

F 11109/93 09:46 11/06/93 13:46 brockieft
7 11/06193 13:46 11/07/93 10:46 brockett
9 110693 08:45 11/06193 15:45 dampier
10 11/07193 10:47 11/07/93 13:47 dampier

114 1I06193 11:57 11V07193 09",57 badr

The ECS also sends an E-rmail message to badr informing him about his new

assignment as shown below.

The manager also approves step 3 and enters duration of 10 hours to its

substep (step 15), then he schedules step 3. The scheduler finds out that the deadline for

step 15 cannot be met. It suggests the calculated finish time to be used as the deadline of

this step. The screen image of the scheduled is shown below.

Upon the acceptance of the manager to the system suggestion it produces a

feasible schedule according to the new deadline and automatically changes the deadline for

step 3 and step 15 (the substep of step 4) to the new value as shown in the screen images of

121

rom 9adr Sat Nov 6 11:57:37 1993
Return-Path: <badr>
Received: from sunsl-capt.cs. nps.navy.mil (sunsT cs. nps. navy Val
ps.navy.mil (4. 1/SMI-4.1)

id AA08078; Sat, 6 ,,v 93 11:57:36 PST
ate: Sat, 6 Nov 93 11:57.36 PST

From: badr (salah badr)
Message-Id: <9311061957. AA08078ataurus. cs. nps. navy. mu>
To: badr
Status: R

You have been assigned the step no: 14

"0

in-feasible schedule: step # 15
suggested deadline should be >- 13
Would you like to change it? hnswer(y/n)y

Enter the new Deadline 13
STEP ID S LEVEL D-NAME START-TIME FIN! SH TIM!
---- -------------- ---------- -----------

7 MEDIUM brockett 1 6
15 LOW dampier 3 13
10 HIGH dampier 13 16

Confirmation required to save the schedule in DDB. Ansver(Y/N):

step 3 and step 15 in Figure 55 and Figure 55 in Appendix D. The screen image of the

updated schedule is shown below.

F8 11/06/93 09:46 111/06/93 13:46 brockeft
7 11/06/93 13:46 IVI07193 10:46 brockett
9 11/06/93 08:45 11/06/93 15:45 dampier
10 11/08/93 09:46 11/08193 12:46 dampier
14 11/06/93 11:57 11/07193 09:57 badr
15 11/06/93 15:46 11108193 09:46 dampier

d. Committing ; Step

Now to show the automated VCCM capabilities of the ECS let us commit the

substeps of step I then step 1.

First let designer brockett commits step 8. This automatically updates the

schedule as shown below. This leads to assigning brockett st,-) 7 and sending him an

E_mail message informing him about his new assignment.

122

F7 11/06/93 13:46 11/07/93 10:46 brockett
9 11/0693 08:45 11/06/93 15:45 dampier
10 11/08/93 09:46 11/08/93 12:46 dampier
14 11/06/93 11:57 11/07/93 09:57 badr
15 11/06/93 15:46 11/08/93 09:46 dampier

Now for the sake of the example let designer brockett commits step 7. This is

an early commit which automatically updates the schedule as shown below.

11/06/93 08:45 11/06/93 15:45 dampier
11/06M93 15:52 11/07193 10:52 dampier

:514 11/06/93 11:57 11/07/93 09:57 badr
1 11/06/93 13:52 11/07/93 15:52 brockett

Notice that as soon as designer brockett commits step 7 the system assigns

him step 15 which was planned for designer darnpier before, because step 15 is ready and

designer brockett becomes available after committing step 7.

Before committing step I let us have a look at the versions of both c3i-system

and fishies prototypes in the database using show prototypes command as shown below.

fshies Has the following versions:fshiestl

i system Has the following versions:

The manager commits step I using commit step command from his menu

when all the verification and checking for the substeps are done. The result of this

command is creating version number 2 on variation number I of the c3i-sysem as shown

below.

fishies Has the following versions:
fishiesll

c3iLsytem Has the following versions:
c3ipystemll
c3isysteml2

123

Now if we look at the available steps at the system we notice that step I and

its substeps 6, 7, and 8 are all have the status completed when we use the show steps with

the option completed from the manager menu as shown below.

stepspet has 15 items.

6, Status: complieted
7, Status: completed
1, Status: completed
8, Status: completed

The screen images of steps 6, 7, 8 and I after they have been completed

showing their expertise-level, the designer assigned to each step the start and finish times

as well as the rest of the attributes are shown in Figure 51. Figure 53, Figure 55, and Figure

54 in Appendix D.

One more feature of the ECS is related to the default base version to which

the top step is applied. When step 1, 2, and 3 are created as top level steps they had the

c3i-system 1:1 as the base version for the three steps. When step 1 is committed producing

c3iLsystem 1:2 the default base version for both steps 2 and 3 is automatically changed to

be the newly created version c3i-system 1:2 as shown in the screen images of step 2 and 3

in Figure 55 and Figure 55 in Appendix D.

Another important feature of the ECS is the automatic warning to both

manager and designer one hour before a step is due to commit as shown in the E-mail

message below received by the manager.

e. Dropping a Designer

Designer dampier commits step 9, and the manager decides to schedule step

4 again. Remember that when step 4 was suspended before its status changed back to

approved. The updated schedule after committing step 9 is shown below.

A 10 11/06193 15:52 11/07193 10:52 dampier
14 11/06/93 11:57 11/07/93 09:57 badr
15 11/06/93 13:52 11/07V93 15:52 brockett

124

ron badr Sat Nov 6 14:26:18 1993
turn-Path: <badr>

eceived: from suns7-caps. cs.nps. navy.mi. (suns7. cs.nps.navy. mi1)
Ps. navy. Wil (4. 1/SXI-4. 1)

id AM08946; Sat, 6 Nov 93 14:26:18 PST
Date: Sat. 6 Nov 93 14:26:18 PSTIrrom: badr (saiah badr)
Xessage-Id: <9311062226. AA08946@taurus. cs.nps.navy.mil>
To: badr
Status: R

ATTENTION REQUIRED Step: 9 should commit vithin an hour...

The manager uses schedule step command for step 4 then the ECS produces

the updated schedule below.

10 U1/06/93 15:52 11/07/93 10:52 dampier
14 11/06/93 11:57 1/07193 09:57 badr

11/06/93 13:52 11/07/93 15:52 brockett
U 11/07/93 09:57 11/08/93 09:57 badr
13 11/08/93 09:57 11/08/93 13:57 dampier
12 11/08/93 09:57 11/08/93 14:57 badr

Now the manager decided to send designer badr to one of the sites, so he must

delete him from the schedule. The manager uses drop designer option from the editteam

sub-menu. After the system asks for the manager's confirmation, it suggests deadline

changes for both steps 13 and 12 as shown below.

When the suggested deadline changes is accepted by the manager, the ECS

produces the following updated schedule.

10 11/06/93 15:52 11/07/93 10:52 dampier
14 11/07/93 10:59 11/08/9308:59 dampier
15 11/0/93 13:52 11/07/93 15:52 brockett

111 11/07/93 15:59 11/08/93 15:59 brooket
13 11/08/93 15:59 11/09/93 11:59 dampier
12 wos0 15:59 11/09/93 12:59 brockett

Notice that, the assigned and the planned steps for designer badr are

rescheduled to both designers brockett and dampier.

125

I
OTICE: The Designer just deleted vas busy

RESCHEDULING his/her tasks.
in-feasible schedule: step # 13
suggested deadline should be >- 20
gould you like to change it? hnsver(y/n)y

Enter the nev Deadline 20
in-feaible schedule: step * 12
suggested deadline should be >. 21
ould you like to change it? hnMver(y/n)y

Enter the nev Deadline 21
STEP ID S LEVEL DINAME START-TIME FINISH-TIME

74 LOW daapier 3 9
11 LOW brockett 8 16
12 LOW brockett 16 21
13 LOW dampier 16 20

D. ANALYSIS OF RESULTS

1. The ECS automatically identifies the affected components by the proposed changes
(the primary inputs of the proposed changes) which is very important for software
consistency.

2. The ECS creates a substep for each affected module of each approved step as a way
to enforce the propagation of the change effects to guarantee software consistency.

3. The ECS gives the manager the edit capability to override the automated decisions
which is always needed to give the managers a sense of control over their systems.
and also to add the necessary information for the automated function to be per-
formed properly

4. The ECS supports incremental planning and rescheduling of tasks according to the
expertise level requi,,d by each task, available designers, deadlines constraints, pre-
cedence and priority constrains that is needed for medium to large software system
that experience large number of changes that involves many designers.

5. The system also has an automated transparent version control and configuration
management system that keeps track of the evolution history of the system through
tracking the software component versions and which component belongs to which
configuration

6. The ECS keeps the information among the three components of its state model con-
sistent all the times to support cooperative work for multi-user, multiple projects
organizations.

126

VI. CONCLUSIONS

A. SUMMARY

In this dissertation, we have presented the Evolution Control System (ECS) as an

integrated system for software evolution. We integrate a transparent version control and

configuration management mechanism for evolving software systems together with an

assignment and scheduling system to enforce cooperation and coordination between

designers working concurrently on the same or different systems. This integrated system is

necessarily dynamic to cope with the special nature of the software evolution problem

where the steps (changes) to be coordinated, scheduled and carried out are only partially

known. Time required, the set of sub-tasks for each step, and the input/output constraints

between steps are all uncertain, and subject to change as evolution steps are carried out. The

ECS introduces the following features:

I. Automated support for changes in plan during the execution of the plan.

2. Automatic decision support for planning and team coordination based on design
dependencies captured in the configuration model.

3. Enhanced graph model for software evolution implemented as the main part of the
state model of the system.

4. The development and implementation of an automated version control and configu-
ration management mechanism that automatically keeps track of the software com-
ponent versions and which component belongs to which configuration.

5. The development and implementation of a mechanism for detecting change conse-
quences (determining the components affected by a change) to maintain the global
consistency of the design database and provide serializability of updates.

6. The development and implementation of a dynamic heuristic scheduling algorithm
that finds a feasible schedule that: meets the deadline and precedence constraints of
all the active steps, or suggest new deadlines for the lowest priority deadlines until a
feasible schedule that meets the deadlines of the higher priority steps is reached. In
addition, the scheduling mechanism supports incremental replanning as additional
*xew steps are created or the attributes of the existing steps are changed.

7. The above features are integrated in such a way that it is possible to use the serializa-
tion of tasks according to their precedence constraints as a method for concurrency
control as explained in detail in Chapter IV.A.2.

We have found that providing automated support for the following aspects of software

evolution is practical and feasible.

127

1. Changes in the plan during the execution of the plan,

2. Planning and team coordination based on design dependencies,

3. Detecting change consequences,

4. Non-serialized parallel elaborations, and

5. Automated version control and configuration management.

B. IMPORTANCE OF RESEARCH RESULTS

The importance of this research is that it provides managers of the medium to large

software projects with the automated help they need to make informed and intelligent

decisions in the management of software systems under development/evolution. This is

especially important in environments where the number of changes is very large, difficult

to follow up manually, hard to coordinate and have their consequences detected and

propagated, which in turn threatens the consistency of the software.

Automated help for detecting change consequences and coordinating changes

according to the relations and constraints among different changes not only guarantees

system consistency, but also guarantees full utilization of the human resources assigned to

perform coordinated changes and avoids rollbacks.

Keeping a complete record of the software's evolution history 'via the developed

configuration graph provides a rich history trail for future management reference.

Automatically tracking of software component versions and component configuration

dependencies in a way that is transparent to users relieves both managers and designers

from the burden of manual book-keeping of the evolution history, which is a very hard, if

not impossible, task in medium to large systems.

C. PROPOSED EXTENSIONS

The main proposed extension to this work is to develop and integrate a requirement

dependencies mechanism which will propagate changes not only between the specification

and implementation components, but also include requirements documents on-line where

any change to a software system's requirements automatically triggers proposed changes

to corresponding specification modules and subsequently, the implementation modules.

Another plausible refinement is to limit the responsibilities of each designer for a set

of projects which constrains the ECS step assignments. Moreover make the scheduler take

128

//

F,
into consideration other demands on designers time such as meetings, demos etc. Also

include the option of limiting managers responsibilities to a single project.

Other extension is to integrate a change-merging mechanism which will allow the

manager to automatically combine results of several completed steps that were explored in

parallel. This aspect is currently being explored (221 [23).

Another possible extension is the integration of policies for automatic quality check

procedures before the commitment of steps. A minimum step in this direction is to ensure

that the software can be compiled without errors before it can be committed to the design

database.

As for the implementation of the ECS system the following improvements are

required:

1. Integrating the menu driven user interface commands to the existing Tae user inter-
face.

2. Find a way for direct interface between Ada and Ontos DB to save the interface time
between Ada to C++ then to Ontos which will significantly enhance the ECS perfor-
mance.

129

A
VII. APPENDICES

A. Formal Specifications

1. State Model and related concepts

DEFINITION ECS-state-model

INHERIT configuration-graph

INHERIT designer

INHERIT schedule

STATE (graph: configuration_.graph,

schedule: schedule-type,

-- The schedule also is used for opternizing the operations of the

- scheduling algorithm.

primary...input: map (step, set {component-reference)),

secondary-input map (step, set { component-reference)),

affectedmodules: map I step, set {componenLreference)),

deadline: map I step,time),

estimatedduration: map (step, natural),

precedence: map { step, set (step)),

priority: map (step, integer),

status: map (step, step-status),

step-experusejevel: map I step, expjevel),

designer-.pool: set (designer))

INVARIANT

feasibleschedule (schedule) I managernotified (schedule),

- either a feasible schedule is reached or manager is notified of suggestion

- to get a feasible one.

knowndesigners (schedule),

- every designer in the schedule must be in the designer..pool

activesteps (schedule),

130

- each step in the schedule must be in the configuration graph, must be atomic

- and its status must be either scheduled or assigned,

- and the schedule must include all such steps.

single-assignment (schedule)

- no more than one step is assigned to the same designer at the same time

INITIALLY graph = empty -graph,

designer-pool (I,

schedule = (1

CONCEPT component-reference: type

WHERE Subtype (specific-component-reference, component.reference)

CONCEPT object-id (c: component-reference) VALUE (objid: suing)

CONCEPT variation_id (c: componenLreference) VALUE (var_id: natural)

CONCEPT versionjid (c: specific componentreference) VALUE (vid: natural)

CONCEPT topjevel (c: specific.component-reference) VALUE (b: boolean)

WHERE b <=> -EXISTS(c 1 :specific-component-reference:: c part-of c I)

- prototypes are represented as top-level components

CONCEPT step-status: type

WHERE step-status = enumeration (proposed, approved, scheduled, assigned,

abandoned, completed, all)

- all is used to indicate all the steps of a certain prototype disregarding their status

CONCEPT exp-level:: type

WHERE expilevel = enumeration (low, medium, high, none)

- none is used as a default value for the expertisejevel of a step and treated as

- low to distinguish between the values entered by the manager and the default

- values.

131

I

CONCEPT feasible-schedule (s: schedule-type) VALUE (b: boolean)

WHERE b <-> known-designers (s) & single assignment (s) & active-steps (s)

& predecessors._finished (s)& on time (s, deadline) & sufficientexpertise (s)

CONCEPT knownjdesigners (s: schedule-type) VALUE (b: boolean)

WHERE b <-> ALL (d: designer SUCH THAT d IN s:: d IN designer..pooi)

- every designer in the schedule must be in the designer-pool

CONCEPT single-assignment (schedule: schedule.type) VALUE (b: boolean)

WHERE b <=> ALL (sl, s2: step:: sl IN schedule & s2 IN schedule &

schedule (sl).designer = schedule (s2).designer &

schedule (sl).scheduledfinish_time > schedule(s2).scheduledstartltme

> schedule(s l).scheduled_start_time => s I , s2)

- no more than one step is assigned to the same designer at the same time

CONCEPT active-steps (s: schedule_type) VALUE (b: boolean)

WHERE b <:> ALL (st: step:: st IN s <=> step in.graph (st. graph) & atomic (st)

& status (st) IN I scheduled, assigned))

- each step in the schedule must be in the configuration graph, must be atomic,

- and its status either scheduled or assigned, and the schedule must include all

-- such steps

CONCEPT atomic (st: step) VALUE (b: boolean)

WHERE b <=> - EXISTS (stl: step:: stI part-of st)

- A step is atomic if it has no substeps.

CONCEPT predecessorsfinished (schedule: scheduletype)

VALUE (b: boolean)

WHERE b <=> ALL (stl, st2: step SUCH THAT stl IN schedule &

132

st2 IN schedule & precedes (st 1, st2, dep-graph)::

schedule(stl).scheduled-finish-tii-.i <= schedule(st2).scheduledstarttime)

CONCEPT on-time (schedule: schedule-type, d: map (steptime))

VALUE (b: boolean)

WHERE b <=> ALL (st: step SUCH THAT st IN schedule:: schedule

(st).scheduled_finishtime <= d (st))

CONCEPT sufficient-expertise (schedule: schedule-type) VALUE (b: boolean)

WHERE b <=> ALL (st: step SUCH THAT st IN schedule::

stepexpertise_level (st) <= designerexpertise_level (schedule (st).designer))

- a designer can be assigned to a step only if his expertise-level is at least

- that of the assigned step

CONCEPT uniquestepid (s: step) VALUE (b: boolean)

WHERE b <=> ALL (sl: step:: stepid (sl) - step-id (s) => sl= s)

- step-id is unique for all steps.

END

a. Configuration graph

DEFINITION conflguration.graph

INHERIT componentnode

INHERIT stepnode

MODEL (component-nodes: set (version), step-nodes: set (step),

part.of.edges, used-jby.edges, Ledges, Oedges: set (pair))

INVARIANT

ALL (g: configuration-graph, e: pair SUCH THAT e IN g.part.of.edges::

[(e.start IN g.component-nodes & e.end IN g.component-nodes) I

(e.start IN g.step-.nodes & e.end IN g.step-nodes)]

133

I c [N g.used..by...edges:: e.start IN g-component..nodcs; & e.end IN
g.component..nodes I e IN g.L-edges:: e.start IN g.component~nodes & e.end IN
g.step...nodes

I e IN g.O...edges:: e.start IN g.step-nodes & e.end IN g.component-nodes)

CONCEPT is.component node (x: version, g: configuration-.graph)

VALUE (b: boolean)

WHERE b <=> x IN g.component-.nodes

CONCEPT component-in-gaph (o: component-.reference, g: configuration-graph)

VALUE (b: boolean)

WHERE b <=> SOME (c: version SUCH THAT is..component..node (c, g)::
objectjd (c) = objcctjid(o))

CONCEPT step-in..graph (s: step, g: configuration..graph) VALUE (b: boolean)

WHERE b <=> s IN g.step...nodes

CONCEPT empty...graph VALUE (g: configuration..graph)

WHERE g.nodes; = (),g.edges = ()

CONCEPT add~stcp..node (s: step, gi: configuration--raph)

- Add a step node.

VALUE (g2: configuration..graph)

WHERE g2.step...nodes = gl1.step...nodes U (s), g2.coniponent~nodes

gi .component-.nodes, g2.edges - g I.edges

CONCEPT addscomponent..node (c: version, g I: configuration..graph)

-. Add a component node.

134

VALUE (g2: configuration_..raph)

WHERE g2.component..nodes = g L component-nodes U (c , g2.step-nodes=

gl.step-.nodes, g2.edges = gL~edges

CONCEPT add-input-edge (c: version, s: step, g 1: configuration..graph)

-- Add an input edge.

VALUE (g2: configuration-.graph)

WHERE g2.componenLnodes = g I.component..nodes U (c), g2.step...nodes=

g Lstcp...nodes U is)

g2.1_edges - g l.Ledges U ([start:: c, end:: s]), g2.O...edges; = g 1.O..edges,

g2.part-of-e.dges - g 1 part...of.edges, g2. used-.by...edges - g 1. used-.by..edges

CONCEPT add-output-edge (s: step, c: version, g I: configuration..graph)

--Add an input edge.

VALUE (g2: configuration...graph)

WHERE g2.component-nodes = g 1 component...nodes U (c),

g2.step-.nodes = g 1 .step-nodes U (s)

g2.ledges = gl.I..edges, g2.O...edges = gl.O...edges U ([start:: s, end:: ci),

g2.part-.of-edges = gl.partcoLedges, g2.usecL-by....dges = gi .used-.by...edges

CONCEPT reniove..input...edge (c: component, s: step, g 1: configuration-..graph)

- Remove an input edge.

VALUE (g2: configuration-.graph)

WHERE g2.nodes = gl.nodes,

g2.Ledges = gi I-.edges - ([start:: c, end:: sl 1, g2.O...edges = gl.O-.edges,

g2.part-Lofedges = g 1 .part..of...edges, g2.used..by-.edges = g I .used-.by-..edges

CONCEPT remove...input~edges (s, g 1) VALUE Qg2: configuration~graph), WHERE

g2.nodes = gl.nodes,

135

g2.1_edges - gl. edges- IALL (e: ledge SUCH THAT end (e)= s)),

g2.O-edges = gl.O-edges, g2.parr of_edges = gl.part-ofedges,

g2.used-by_..edges = g l.used-by-edges

CONCEPT configuration-graph-node: type

WHERE Subtype (version, configuration-graph-node),

Subt;'pe (step, configuration-graph.node),

ALL (n: configuration-graph-node :: n IN version I n IN step)

-- configuration graph nodes are either steps or versions.

CONCEPT pair: type

WHERE pair = tuple {start, end:: configuration-graph.node I

CONCEPT version: specific-component_reference

END

DEFINITION stepnode -- Concepts for describing step-node

CONCEPT step: type

CONCEPT step_id (s: step) VALUE (s_id: natural)

CONCEPT top_level(s: step) VALUE (b: boolean)

WHERE b <=> -EXISTS (s1: step:: s part-of s 1)

END

DEFINITION dependency_graph -- Concepts for describing

dependency.graph

dep.graph= f(dep-nodes, dep.edges)

CHOOSE (depnodes, dep.-edges SUCH THAT

ALL(n:: n r dep_nodes <=> n IN graph.step-.nodes &

status(step(n)) IN I scheduled, assigned) & atomic (step(n))) &

ALL(e:: e r dep-edges <=> e.start, e.end IN depnodes))

END

136

b. DesignerjPool

DEFINITION designer -- Concepts for describing designer-pool

CONCEPT designer: type

CONCEPT name (d: designer) VALUE (n: string)

CONCEPT designer..expertisejevel (d: designer) VALUE (e: exp_level)

CONCEPT status (d: designer) VALUE (s: enumeration I busy, free j)

END

c. Schedule

DEFINITION schedule -- Concepts for describing the schedule

CONCEPT schedule-type: type

WHERE schedule-type = map (s: step, tuple {d:: designer, scheduled-startjtime,

scheduled-finish-time: time })

CONCEPT update-schedule (oldschedule: schedule-type, s: step SUCH THAT

status (s) = approved)

VALUE (newschedule: schedule_type)

- recalculate schedule due to scheduling a new step

WHERE ALL (sI: step SUCH THAT sI part-of s & atomic (sI)::

sl IN new-schedule) & ALL (sl: step:: sl IN old.schedule => sl IN newschedule)

CONCEPT update.schedule (oldschedule: schedulejype, s: step SUCH THAT

status (s) IN (abandoned, completed))

VALUE (new-schedule: schedule_type)

-- recalculate schedule due to abandoning a step

WHERE ALL (sI: step SUCH THAT sI part-of s & atomic (sI)::

- (s I N newschedule) & EXISTS (s2 IN newschedule SUCH THAT

new-schedule (s2).designer = oldschedule (s l).designer & status (s2) = assigned)) &

ALL (s2: step:: s2 IN oldschedule <=> s2 IN new-schedule I s2 partnof s)

137

CONCEPT update-schedule (old-schedule: schedule-type, d: designer SUCH THAT

- (d IN old-schedule))

VALUE (newschedule: schedule_type)

-- recalculate schedule after adding a new designer

WHERE (d IN newschedule & ALL (sl: step:: sl IN newschedule <=> sl IN

old-schedule))

CONCEPT updateschedule (old-schedule: schedule-type, d: designer SUCH THAT

d IN oldschedule)

VALUE (newschedule: scheduletype)

recalculate schedule after dropping a designer

WHERE (-(d IN newschedule) & ALL (s1: step:: sI IN new-schedule <=>

sl IN oldschedule))

CONCEPT schedule-changes (old-schedule, new-schedule: schedule-type)

VALUE (ch: schedule_type)

WHERE ALL (sl: step:: sI IN ch <=> (sI IN old-schedule & - (sI IN

new.schedule)) I (- (sI IN oldschedule) & sI IN newschedule) I

(old_schedule [sl] -= new-schedule [sl] & ch (sl) = newschedule [sl]))

END

d. Assignments

DEFINITION assignment -- concepts for assigning a designer to

a step

INHERIT ECS-statemodel

INHERIT designer

CONCEPT curr_assign (s: step, d: designer) VALUE (b: boolean)

138

WHERE b <-> active (s) & predecessorjinished (s) & status (d) = free &

designer expertise_level (d) >= stepexpertise_level (s)

CONCEPT predecessorjfinished (s: step) VALUE (b: boolean)

WHERE b <=> ALL (sl: step SUCH THAT active (sl)::

-precedes(. .I. !, dep_graph))

CONCEPT active (s: step) VALUE (b: boolean)

WHERE b <=> status (s) IN (scheduled, assigned }

CONCEPT check-due.completion (s: schedule-type) VALUE (w: warning, ss: set

(step))

WHERE ALL (st: step :: st IN ss <=> st IN s & status (st) - assigned &

s(st).scheduled-finishltime <= current-time)

CONCEPT warning: string

WHERE warning = "the following steps missed their finish time, either commit or

increase their estimated duration"

END

2. Behavior Model

MACHINE Evolution Control System

INHERIT designer-interface

INHERIT managerjnterface

END

139

MACHINE common interface

available steps

sbow steps
-osucbhprototype

create step

nosuch_prototype

......... .,• undeftinejput

FIGURE 31. StimulusResponse diagram for the common interface

INHERIT ECSstatemodel

MESSAGE showsteps (p: component-reference SUCH THAT topjevel(p),

t: step-status)

- display all steps with the given status of the given prototype

WHEN component-in..graph(p, graph)

REPLY (s: sequence (step))

WHERE ALL (;: step:: i IN s <=> step-in.graph(i, graph) & (status (i) - t I t=all))

OTHERWISE REPLY EXCEPTION nosuchprototype

MESSAGE createstep (p: componentreference SUCH THAT top jevel(p),

primary-input :set (componentreference))

WHEN componentjin.graph(p, graph)&

component~ingraph (c: component_reference SUCH THAT c IN primary-input,

graph)

REPLY (s: step

140

fI
WHERE unique-step-id (s)

TRANSITION primary-input =bind(s, prim, *primary_input),

secondary-input = bind(s, sec,*secondary-input),

affected_modules - bind (s, aff, *affected_modules),

- affected modules and secondary inputs are automatically generated

addstep-node(s, graph), only-change (graph, *graph, s)

WHEN component-inpgraph(p, graph)&

- component-in.graph (c: componentreference SUCH THAT c IN

primary-input, graph)

REPLY EXCEPTION undefinedjinput

OTHERWISE REPLY EXCEPTION no.such.prototype

END

MACHINE edit-interface

- This interface includes all the messages required to modify the step attributes, the

- management constraints, and the designer.pool data.

INHERIT ECSstate_model

MESSAGE add-primary-input (;- step SUCH THAT topjlevel (i),

c: specificcomponent_reference)

- this is used to add primary-input to the step as they become known

- normally a step has one primary input except in case of a merge when it has

- two or more

WHEN - component-in_graph (c, graph)

REPLY EXCEPTION undefined input

WHEN step-in..graph(i,graph) & component-in-graph (c, graph)

REPLY done

TRANSITION

primary-input a bind(i, *primaryjinput (i) U 1 c0, *primaryinput),

141

onlychange (i, *i. c)

OTHERWISE REPLY EXCEPTION no~such-step

MESSAGE add-affected.modules (i: step SUCH THAT top_level (i),

c: componentreference)

- this is used to add affectedmodules to the step as they become known

- since the calculated set is an approximation

WHEN - component-in.graph (c, graph)

REPLY EXCEPTION undefined-input

WHEN step-in-graph(i,graph) & - (i IN schedule)

REPLY done

TRANSITION only-change (i, *i, c),

affected-modules = bind(i, *affected-modules (i) U c 0, *affected&modules)

WHEN i IN schedule & feasibleschedule (updateschedule (*schedule, i))

REPLY (schedule_,changes (*schedule, schedule))

- the schedule must be updated to maintain the invariant

TRANSITION onlychange (i, "i, c), only_change(*schedule, schedule, i),

affected-modules = bind(i, *affected_modules (i) U (c), *affected-modules)

WHEN i IN schedule & SOME (s: schedule-type SUCH THAT

S = update-schedule (*schedule, i):: - feasible-schedule (s) &

- manager-confirmation (s))

- ask for manager confirmation only if a feasible schedule cannot be reached

REPLY changes_undone

WHEN i IN schedule & SOME (s: schedule-type SUCH THAT

s = update-schedule (*schedule, i)::

- feasible-schedule (s) & manager.confirmation (s))

REPLY (schedulechanges (*schedule, schedule))

TRANSITION only-change (i, *i, c), only-change(*schedule, schedule, i),

142

affectedcmodules - bind(i, *affected-modules (i) U (c 1, *affectedmodules)

deadline = leastslips (*deadline, schedule)

-- the schedule must be updated to maintain the invariant

The deadline changes is kept to the minimum required to get a feasible

-- schedule

OTHERWISE REPLY EXCEPTION no.such.step

MESSAGE add-secondaryinput (i: step SUCH THAT top-level (i),

c: component-reference)

- this is used to add secondary_input to the step as they become known

WHEN - component_in_graph (c, graph)

REPLY EXCEPTION undefined-input

WHEN step-in-graph(i,graph) & - (i IN schedule)

REPLY done

TRANSITION only-change (i, *i, c),

secondary input = bind(i, *secondary input (i) U (c), *secondaryinput)

WHEN i IN schedule & feasible-schedule (update.schedule (*schedule, i))

REPLY (schedulechanges (*schedule, schedule))

- the schedule must be updated to maintain the invariant

TRANSITION onlychange (i, *i, c), onlyphange(*schedule, schedule, i),

secondaryinput = bind(i, *secondary_input (i) U (c), *secondaryinput)

WHEN i IN schedule & SOME (s: schedule-type SUCH THAT

s = update-schedule (*schedule, i):: - feasibleschedule (s) &

~ manager._confirmation (s))

-- ask for manager confirmation only if a feasible schedule cannot be reached

REPLY changes.undone

WHEN i IN schedule & SOME (s: schedule_type SUCH THAT

s = update-schedule (*schedule, i)::

143

- feasible-schedule (s) & managerconfirmation (s))

REPLY (schedulechanges (*schedule, schedule))

TRANSITION only-change (i, *i, c), only_change(*schedule, schedule, i),

secondary-input = bind(i, *secondary-input (i) U (c), *secondary-input),

deadline - leastslips (*deadline. schedule)

-- the schedule must be updated to maintain the invariant

- The deadline changes is kept to the minimum required to get a feasible

-- schedule

OTHERWISE REPLY EXCEPTION nosuchstep

MESSAGE delete-primary-input (i: step SUCH THAT topjevel (i),

c: component-reference)

- this is used to delete inputs from the step's primary input.

WHEN WHEN - component_in-graph (c, graph)

REPLY undefined_input

WHEN stepjin.graph(i,graph)

REPLY done

TRANSITION primary-input = bind(i, *primary-input (i) (c),

*primary-input),

onlychange (i, N, primary_input)

OTHERWISE REPLY EXCEPTION nosuchstep

MESSAGE deleteaffectedmodules (i: step SUCH THAT top-level (i),

c: component.reference)

- this is used to delete those affected-modules that do not need change.

WHEN - component_in_graph (c, graph)

REPLY undefinedobject

WHEN stepjn_graph(i,graph) & status (i) = approved

144

Cl
REPLY done

TRANSITION only-change (i, *i, c).

affectedmodules - bind(i, *affectedmodules (i)- (c), *affectedmodules)

WHEN i IN schedule

REPLY (schedulechanges (*schedule, schedule))

TRANSITION only-change (i, *i, cs),

affectedmodules = bind(i, *affected-.modules (i)- (c 1, *affected_modules)

OTHERWISE REPLY EXCEPTION no-such.step

MESSAGE delete-secondary~input (i: step SUCH THAT top-level (i),

c: component_reference)

- this is used to delete secondary inputs to a step

WHEN - component.in.graph (c, graph)

REPLY EXCEPTION undefined-input

WHEN stepjn._.graph(i,graph) & - (i IN schedule)

REPLY done

TRANSITION only-change (i, *i, c),

secondary-input = bind(i, *secondaryinput (i) - (c), *secondary-input)

WHEN i IN schedule

REPLY (schcdulechanges (*schedule, schedule))

TRANSITION only-change (i, *i, secondary.input),

secondary_input = bind(i, *secondary-input (i) - (c), *secondaryinput)

- the schedule must be updated to maintain the invariant

OTHERWISE REPLY EXCEPTION nosuchstep

MESSAGE update-priority (i: step SUCH THAT topjevel (i), p: natural)

WHEN i IN steps & (p > priority (i1) SUCH THAT iI IN precedence (i))

REPLY EXCEPTION priority-conflict

WHEN step-in-raph(i,graph) & - (i IN schedule)

145

A
REPLY done

TRANSITION priority = bind (i, p, *priority), only.change (i, *i, p)

WHEN i IN schedule & feasibleschedule(updateschedule (*schedule, i))

REPLY (schedule-changes (*schedule, schedule))

TRANSITION priority = bind (i, p, *priority)

- the schedule must be updated to maintain the invariant

WHEN i IN schedule & SOME (s: schedule-type SUCH THAT

s = updateschedule (*schedule, i):: - feasibleschedule (s) &

- managerconfi'mation (s))

REPLY change-undone

WHEN i IN schedule & SOME (s: schedule_type SUCH THAT

s = update-schedule (*schedule, i):: - feasible_chedule (s) &

managerconfmnation (s))

REPLY (schedule-changes (*schedule, schedule))

TRANSITION priority = bind (i, p, *priority),

deadline = least_slips (*deadline, schedule)

- the schedule must be updated to maintain the invariant

- The deadline changes is kept to the minimum required to get a feasible

- schedule

OTHERWISE REPLY EXCEPTION nosuch_step

MESSAGE updateprecedence (i: step SUCH THAT toplevel (i), p: set I step))

WHEN step-in_.graph(i,graph) & (priority (i) > priority (iI) SUCH THAT

il INp)

REPLY EXCEPTION priority-conflict

WHEN step-ingraph(i - ,h)& - (i IN schedule)

REPLY done

TRANSITION precedence - bind (i, p, *precedence), only-change (i, *i, p)

WHEN i IN schedule & feasible-schedule (update-schedule (*schedule, i))

146

REPLY (schedule-changes (*schedule, schedule))

- the schedule must be updated to maintain the invariant

TRANSITION precedence = bind (i, p, *precedence)

WHEN i IN schedule & SOME (s: schedule_type SUCH THAT

s a updateschedule (*schedule, i):: - feasibleschedule (s) &

- managersconfirmation (s))

- ask for manager confirmation only if schedule invalidated

REPLY change-undone

WHEN i IN schedule & SOME (s: schedule_type SUCH THAT

s = update-schedule (*schedule, i):: - feasible-schedule (s)&

manager.confrirmation (s))

REPLY (schedule-changes (*schedule, schedule))

TRANSITION precedence = bind (i, p, *precedence),

deadline = least_slips (*deadline, schedule)

- the schedule must be updated to maintaip the invariant

- The deadline changes is kept to the minimum required to get a feasible

schedule

OTHERWISE REPLY EXCEPTION no-such-step

MESSAGE update-deadline (i: step SUCH THAT top-level (i), d:time)

WHEN step-in-graph(i,graph) &- (i IN schedule)

REPLY done

TRANSITION deadline - bind (i, d, deadline)

WHEN i IN schedule & feasible-schedule (updateschedule (*schedule, i))

REPLY (schedule-hanges (*schedule, schedule))

TRANSITION deadline = bind (i, d, deadline)

- the schedule must be updated to maintain the invariant

WHEN i IN schedule & SOME (s: schedule-type SUCH THAT

s = update-schedule (fschedule, i):: - feasibleschedule (s) &

- manager.confurmation (s))

147

REPLY changeundone

WHEN i IN schedule & SOME (s: schedule_type SUCH THAT

s = update.schedule (*schedule, i):: - feasibleschedule (s) &

managerconfirmation (s))

REPLY (schedule-changes (*schedule, schedule))

TRANSITION deadline = leastslips (*deadline, schedule)

- the schedule must be updated to maintain the invariant

- The deadline changes is kept to the minimum required to get a feasible

- schedule

OTHERWISE REPLY EXCEPTION nosuchstep

MESSAGE updateestimatedduration (i: step, t: natural)

WHEN stepin...graph(i,graph) & - (i IN schedule)

REPLY done

TRANSITION estimatecduration = bind (i, t. *estimated_duration)

WHEN i IN schedule & feasible-schedule(update.schedule (*schedule, i))

REPLY (schedulechanges (*schedule, schedule))

TRANSITION estimatedduration = bind (i, t. *estimated_duration)

-- the schedule must be updated to maintain the invariant

WHEN i IN schedule & SOME (s: schedule-type SUCH THAT

s = update-schedule (*schedule, i):: - feasible_schedule (s) &

- manager_confirmation (s))

REPLY change-undone

WHEN i IN schedule & SOME (s: schedule-.type SUCH THAT

s = update-schedule (*schedule, i):: - feasibleschedule (s) &

managerconfirmation (s))

REPLY (schedulechanges (*schedule, schedule))

TRANSITION estimated duration = bind (i, t, *estimated-duration),

deadline = least.-slips ('deadline, schedule)

-- the schedule must be updated to maintain the invariant

148

The deadline changes is kept to the minimum required to get a feasible

-- schedule

OTHERWISE REPLY EXCEPTION no-such-step

CONCEPT consistent-deadlines (d 1, d2: map I step,time }) VALUE (b: boolean)

WHERE b <=> ALL (s: step:: d I(s) = d2 (s))

- for dl to be consistent with d2, either the deadline of each step in dl is

- equal to that of the same step in d2 or relaxed to be equal to its calculated

- finish time.

CONCEPT valid-slip (dl, d2: map (step,time}) VALUE (b: boolean)

WHERE b <=> consistent_deadlines (dl, d2) &

ALL (sI. s2: step::

dl(sl) = none -= d2(sl) & dl(s2) -= none => priority (s2) >= priority (sI))

-- new deadline map is valid only if the relaxed deadlines are the lowest

- priority deadlines

CONCEPT slips-more (dl, d2: map { step,time }) VALUE (b: boolean)

WHERE b <=> consistent.deadlines (d 1, d2) & d I -= d2

CONCEPT least-slips (d I: map { step,time }, s: scheduletype)

VALUE (d2: map {steptime))

WHERE valid_slip (d2,dl) & feasibleschedule (s, d2) &

ALL (d3: map I step,time}::

slips-more (d2, d3) & consistent_deadlines (d3,dl) =>

- SOME (s I: schedule_type:.feasibleschedule (s I, d3))

CONCEPT only-change (x y: any, $attribute-names: identifier)

VALUE (b: boolean)

149

-- True if x and y can differ only in the listed attributes.

WHERE ALL (id: identifier.: x.id -= y.id => id IN attribute-nam,:s)

END

3. Manager Interface

MACHINE designerpool view

INHERIT ECS-statejmodel

INHERIT common-interface

MESSAGE add_designer (d: designer)

- adding a designer to the designer-pool

WHEN - (d IN designers-pool)

REPLY (scheduleschanges (*schedule, schedule))

TRANSITION designers-pool = *designers.pool U {d)

-- the schedule must be updated to use the new designer and maintain the

invariant

- adding a designer cannot invalidate a feasible schedule

OTHERWISE REPLY EXCEPTION designer_exists

MESSAGE drop_designer (d: designer)

- remove designer from the designers-pool

WHEN d IN designer-pool &- (d IN schedule)

REPLY done

TRANSITION

designers-pool = *designers-pool - (d)

WHEN d IN designer-pool & d IN schedule

REPLY warning&confirmation-required

WHEN d IN designer..pool & d IN schedule &

SOME (s: schedule-type SUCH THAT s= updateschedule (*schedule, d)::

150

feasibleschedule (s) & manager_confir'mation (s))

REPLY (schedule-changes (*schedule, schedule))

TRANSITION designer-pool = *designer-pool - Idl

WHEN d IN designer-pool & d IN schedule & SOME (s: scheduletype SUCH

THAT

s = update-schedule (*schedule, d):: - feasibleschedule (s) &

- managerconfirmation (s))

REPLY change-undone

WHEN d IN designer-pool & d IN schedule &

SOME (s: schedule-type SUCH THAT s = update.schedule (*schedule, d)::

- feasibleschedule (s) & manager-confirmation (s))

REPLY (schedulechanges (*schedule, schedule))

TRANSITION designers-pool = *designers-pool - I d),

deadline = least.slips (*deadline, schedule)

-- the schedule must be updated to maintain the invariant

-- The deadline changes is kept to the minimum required to get a feasible

schedule

OTHERWISE REPLY EXCEPTION nosuch.designer

MESSAGE designer._expertise_ level (d: designer, e: exp-level)

- modify the designer's expertise level

WHEN d IN designer..pool & - (d IN schedule)

REPLY done

TRANSITION designer expertise-level (d) = e,

only-change (*d, d, designer-expertise-level)

WHEN d IN designer-pool & d IN schedule &

feasibleschedule (updateschedule (*schedule, d))

REPL'y (scheduleschanges (*schedule, schedule))

TRANSITION designer-.expertisejevel (d) = e,

151

only-change (*d, d. designer-expertse-level)

WHEN d IN designerpool & d IN schedule &

SOME (s: scheduleype SUCH THAT s= update.schedule (*schedule, d)::

- feasible-schedule (s) & - manager._confirn'ation (s))

REPLY changeundone

WHEN d IN designer-pool & d IN schedule &

ALL (s: schedulejtype SUCH THAT s= updateschedule (*schedule, d)::

- feasible-schzdule (s) & managersconfirmation (s))

REPLY (schedule-changes (*schedule, schedule))

TRANSITION designerexpertisejlevel (d) = c.

only-change (*d, d, designer-expertise.level)

deadline = leastslips (*deadline, schedule)

-- the schedule must be updated to maintain the invariant

The deadline changes is kept to the minimum required to get a feasible

-- schedule

OTHERWISE REPLY EXCEPTION nosuchdesigner

MESSAGE showdesigners (dp: set{ designer I)

- display all the designers in the designer's pool

WHEN dp /= (I
REPLY (s: set Idesigners))

WHERE ALL (d: designer:: d IN s <=> d IN dp)

OTHERWISE REPLY EXCEPTION no.such-prototype

END

MACHINE manager interface

INHERIT user -- defines User-class, uses

INHERIT designer-pool-view

152

Io
INHERIT common_interface
[NHERIT editjnterface

IN-EPIT ECS-state-model

MESSAGE approve-step (s: step SUCH THAT top-level(s))

-- used to approve a step which triggers the change propagation via the

-- calculation of the affected modules

WHEN status (s) = proposed

REPLY (ss: set (component_reference))

TRANSITION status = bind (s, approved, *status), auto_createsubstep (s)

advance the step status to "approved"

calculate the set of modules affected by the step

-- create an atomic substep for each affected module

OTHERWISE REPLY EXCEPTION no-such-proposed-step

MESSAGE show-schedule (p: prototype-name)

-- display the full schedule

WHEN prototype (p) IN prototypes

REPLY (s: scheduletype)

WHERE s = schedule
OTHERWISE REPLY EXCEPTION nosuch.prototype

MESSAGE schedule-step (s: step)

WHEN status (s) = approved &

SOME (sl: step SUCH THAT s, part-of s.: estimatedduration (sl) = 0)

REPLY estimatedduration.not.specified

WHEN status (s) = approved & feasibleschedule (update schedule (*schedule,

s))

153

REPLY (schedule_changes (*schedule, schedule))

TRANSITION status = bind (s. scheduled, *status)

- the schedule must be updated to maintain the invariant

WHEN status (s) = approved & SOME (sch: schedule-type SUCH THAT

sch = updateschedule (*schedule, s)::- feasibleschedule (sch) &

- manager-confirnmation (sch))

REPLY stepjis-not-scheduled

WHEN status (s) = approved & SOME (sch: schedule_type SUCH THAT

sch = update-schedule (*schedule, s):: - feasible-schedule (sch) &

manager_confirmation (sch))

REPLY (schedule_changes (*schedule, schedule))

TRANSITION status = bind (s, scheduled, *status)

deadline = least_slips (*deadline, schedule)

- the schedule must be updated to maintain the invariant

-- The deadline changes are kept to the minimum required to get a feasible

-- schedule

OTHERWISE REPLY EXCEPTION no-such-approved-step

I4.

MESSAGE abandonstep (s: step)

WHEN step in.raph(s,graph) & - (s IN schedule)

REPLY done

TRANSITION status = bind (s, abandoned, *status)

WHEN s IN schedule & status (s) = scheduled

REPLY (schedule changes (*schedule, schedule))

TRANSITION status = bind (s. abandoned, *status)

-- the schedule must be updated to maintain the invariant

WHEN s IN schedule & status (s) = assigned

SEND ("step abandoned", s) TO schedule [s].designer

REPLY (schedule changes (*schedule, schedule))

154

TRANSITION status - bind (s, abandoned, *status),

remove-inpuL.edges (s, graph)

- remove the abandoned step from the schedule and re-assign its designer

- remove version bindings of inputs to the step

OTHERWISE REPLY EXCEPTION nosuchstep

MESSAGE suspendstep (s: step)

WHEN s IN schedule & status (s) = scheduled

REPLY (schedule-changes (*schedule, schedule))

TRANSITION status = bind (s, approved, *status)

-- the schedule must be updated to maintain the invariant

WHEN s IN schedule & status (s) = assigned

SEND ("step suspended", s) TO schedule (s).designer

REPLY (schedule-changes (*schedule, schedule))

TRANSITION status = bind (s, approved, *status),

remove_input.edges (s, graph)

-- the schedule must be updated to maintain the invariant

OTHERWISE REPLY EXCEPTION nosuchscheduled-step

MESSAGE commit-step (s: step SUCH THAT toplevel(s))

- committing a top level step means adding its output components to the configuration

graph

-- and releasing the committed version to the public use.

WHEN status (s) = assigned &

ALL (sI: step SUCH THAT part.of (sI, s):: status (sI) = completed)

REPLY done

TRANSITION status (s) = completed,

-- The new protoytpe configuration should be created at this point

155

OTHERWISE REPLY EXCEPTION nosuchmssigned-step

MESSAGE manager._confirmation (s: schedule-type)

REPLY (b: boolean)

- b is true if the manager responds positively after being notified of

- schedule invalidation (deadlinechange).

CONCEPT managernotified (s: schedule_type)

VALUE (dc: set 4deadline_change)

WHERE ALL(st: step:: st IN dc <=> deadline (st) < estimatedfinishtime(st))

CONCEPT deadline-change: type

WHERE deadline-change

tuple { st:: step, deadline (st) estimatedfinishtime (st):: time)

CONCEPT auto-Sreatesubstep (s: step) VALUE (ss: set (step))

WHERE ALL (st: step, c: component_.reference :: st IN ss <=> c IN affected.modules

(s) & primary input(st = c & atomic (st))

CONCEPT manager. Usersclass

WHERE ALL (m: manager:: uses (m, ECS))

- managers use the ECS

manages (m, designers)

manages (m, steps)

END

156

4. Designer Interface

The designer interface with ECS enables the designer to view the steps in a given

prototype with a given status and get the sub-steps assigned to him. This interface also

enables the designer to create a step or a sub-step of an assigned step, updating any of

the step attibutes, as well as committing the assigned sub-step.

MACHINE designer-interface

INHERIT common-interface

INHERIT ECS-state-model

MESSAGE commit_step (s: step, cc : set I specific.component-reference)

- committing an atomic step means storing its output component in the

- shared data space, configuring it, and making it visible only to the design team

WHEN status (s) = assigned & currenLtime <= scheduledJinishtime &

ALL (o: object:: o IN cc & designer_confir'•ation (o) & complete (o))

REPLY done

TRANSITION ALL (o: object:: o IN cc:: add-output.edge (s, o, graph),

status = bind (s, completed, *status)

WHEN status (s) = assigned & current_time <= scheduledf.inishjme &

ALL (o: object:: o IN cc & designer-confirmation (o) & - complete (o))

REPLY (ss: sequence (step})

WHERE ALL (o: object SUCH THAT o IN cc & -complete (o)::

EXIST (sl: step SUCH THAT sl IN ss & primary-input (sl) = o &

status (s 1) = proposed))

TRANSITION ALL (o: object:: o IN cc:: addoutput.edge (s, o, graph),

status = bind (s, completed, *status)

WHEN status (s) = assigned & current_time > scheduled_finish_time &

ALL (o: object:: o IN cc & designerconfirmation (o) & complete (o))

REPLY (schedulechanges (*schedule, schedule))

TRANSITION ALL (o: object:: o IN cc:: addoutput-edge (s, o, graph),

157

status = bind (s, completed, *status)

- schedule must be updated to maintain the invariant

WHEN status (s) = assigned & currenLtime > scheduled_finishdtime &

ALL (o: object:: o IN cc & designer_confirmation (o) & -complete (o))

REPLY (schedulechanges (*schedule, schedule), ss: sequence Istep))

WHERE ALL (o: object SUCH THAT o IN cc & -complete (o)::

EXIST (sI: step SUCH THAT sI IN ss & primary-input (sI) = o &

status (sI) = proposed))

TRANSITION ALL (o: object:: o IN cc:: add-output-edge (s, o, graph),

status = bind (s, completed, *status)

-- schedule must be updated to maintain the invariant

OTHERWISE REPLY EXCEPTION nosuchassigned sub-step

MESSAGE designerconfirmation (s: schedule-type)

REPLY (b: boolean)

-- b is true if the designer responds positively after a warning of schedule

- invalidation

CONCEPT designer: User.class

WHERE ALL (d: designer:: uses (d, ECS))

-designers use the ECS

ALL (s: step:: SOME (d: designer:: perform (d, s)))

END

S. Type Time

INHERIT equality (date)

MODEL (day, month, year, hour, minute: nat)

INVARIANT ALL (d:time:: I <= d.day <= 31 & I <= d.month <= I . &

158

0 <= d.year <= 99 & 0 <= d.hour <= 23 & 0 <= d.minute <= 59 &d < none)

MESSAGE create (d m y, h, rain: nat)

WHEN I <=d<=31 & 1 <=m<= 12&0 <=y<=99&

0 <= h <= 23 & 0 <= min <= 59

REPLY (dl:time)

WHERE d l.day - d, dl.month = m, dl.year = y, diLhour =h,

dl.minute = min

OTHERWISE REPLY EXCEPTION illegaldate

MESSAGE equal (dl d2:time)

REPLY (b: boolean)

WHERE b <=> dl.day = d2.day & dl.month f d2.month &

dl.year = d2.year & dl.hour = d2.hour &

dl.minute = d2.minute

MESSAGE "<"(dl d2:time)

REPLY (b: boolean)

WHERE b <-> 0 < (d2.year - dl.year) MOD 100 < 50

I dl.year = d2.year & dll.month < d2.month

I dl.year = d2.year & dl.month = d2.month & dl.day < d2.day

I dl.year = d2.year & dl.month = d2.month & dl.day = d2.day &

dl.hour < d2.hour

I dI.year - d2.year & dl.month = d2.month & dl.day -* d2.day &

dl.hour a d2.hour & dl.minute < d2.minute

-- Note 12/31/99 < 01/01/00

< is a total ordering on any time interval less than 50 years long

-- but it is not transitive on longer intervals

MESSAGE "<="(dI d2a:ime)

REPLY (b: boolean)

WHERE b <=> dl < d2 I dl = d2

159

CONCEPT none: time

- constant representing absence of a deadline constraint.

END

B. nESIGN DATABASE SCHEMA

1. Clas Step

step.h **..***************.*. ***.****

#ifndef __STEP._H
#define __STEP_H

#include <Object.h>
#include <Type.h>
#include <List.h>
#include <Reference.h>
#include <stream.h>

extern "C"
#
#include <sys/time.h>
#include <sys/types .h>

#include <string.h>
)

#ifndef __COMPONENT_H
#include "component.h"
#endif
#include "supportclasses.h"

class COMP_REFERENCE:public Object
{
private:

char* priv.name;
int versionno;
int variation_no;

public:

COMPREFERENCE(APL *theAPL);
virtual Type *getDirectType(;

160

COMP...REFERENCE U;

void set..priv...name(char* name)(
priv~name=name;

char* get...priv~.nameo()
return priv~name;

void set..version..no(int value)(
version_ýno = value;

int get..version..noo(
return vers ionflo;

void set..variation...no(int value)(
variation~no = value;

jint get....ariation...noo()
return variation_no;

void displaycomp U

class STEP :public Object

private
jilt step-.type;
int step...id;
int indicator;
int in~degree;
mnt estiznated...duratiofl;
int priority;
char* designer;
int. status;
int. required...expertise...level;
Time deadline;
Time start-.time;
Time finish~time;
time~t date_created;
time~t date~of_current...status;
Reference baseversion;

161

Reference primary-..input...list;
Reference secondary~input~list;
Reference output...list;
Reference affectedjnodule..list;
Reference substepjlist;
Reference part-..of;
Reference preceded~by..list;

public:

STEP(APL *tl.eAPL);
STEP(char* name, int s-id);
virtual void putObject(OQC.Boolean

deallocate=FALSE);
virtual void deleteObject(OC_Boolean

deallocate=FALSE);
virtual void Destroy(Boolean abort = FALSE);
virtual Type *getDirectTypeo;

int get~step..type()(return step..type;)
void set..step...type~int type) (step...type =type;)
void displayStep~ido;
int get...step..Jdo(

return step...id;

int get...indicatoro()
return indicator;

void set-indicator~int type)(
indicator =type;

mnt getin~degreeo(I
return in~degree;

void set~injlegree(int type)(
in_degree =type;

void set-estimated~duration(int value)(
estimated_duration= value;

int get...estimated_durationo(
return estimated_duration;

162

void setpriority(int value)(
priority= value;

)
int get_priorityo({

return priority;
)

void setdesigner(char* a-name){
designer=a.name;

)
char* getdesigner(){

return designer;
}

void set-status(int value)(
status a value;

int getstatuso()
return status;

)

void set..required_expertise_level int value){
required...expertise_level=value;

I
int getrequiredexpertiselevel(){

return requiredexpertiselevel;
I

void set.deadline(Time value)(
deadline = value;

I
Time getdeadline()(

return deadline;
}

void setstart_time(Time value)(
starttime = value;

I
Time getstarttimeC){

return starttime;
I

void set-finish-time(Time value)(
finishtime = value;

1

163

Time getfinishtime(){
return finish-time;

}

// set creation time
time-t setCreationDate();

// get creation time
time t get~reationDateo()

return date-created;
)

time_t getdateof_currrnt_statuso(
return date-o current-status;

}

void set_date_of current-status({
date-of currentstatus =

setCreationDate();
)

// get a list of primary input.
List* primaryinput ()

return (List*)
primaryinput_list.Binding(this);

}

// reset a list of primary input
void primaryinput(List* parts) (

primaryinput_list.Reset(Carts, this);
}

// get a list of secondaryinput.
List* secondaryinput ()

return (List*)
secondary_input list.Binding(this);

I

// reset a list of secondary input
void secondary_input(List* parts) (

secondary_inputjlist.Reset(parts, this);
)

II get a list of output
List* outputo()

164

return (List*)output _lis'.Binding(this);

/1reset a list of Gutpur
void output(List* parts)

output~jist.Reset(parts, this);

iiget a list of affected-modules
List* affected~jnoduleo()

return (List*)

affected-module..list.Bindinq(this';

iireset a list of affected-modules
void affected-inodule(List* parts)

affecte-d_rnodule~list.Reset(parts, this);

i/get a list of substeps
List' subst~po((

return (List*)
substep~list.Bir~d~ingigthis)

/1reset a list of substeps
void substep(List' parts)

substlep~list .Reset (parts, thisi;

''get a list of preceded~by
List* preceded~by')

return 'List*)
preceded~by..list .Binding(this1;

a~.- lis ot prec zi'd~by

icii s9paren _Fteýp (STEP* -Dther:,-.ýp)
part..of.Reset~otherstep,this;

165

void set...base..version(COMPREFERENCE* my-.comp)(
base-version.Reset (ry...comp, this);

COMPREFERENCE' aet base-version();
void add~substep(STEP* my..step);
void add...predecessor(STEP* my...step);
//void add-successor(STEP* rny..step);
void add...prirnary...input (COMP_REFERENCE' my..cornp);
void delete...prirary...nput (char* conp~name);
void add_secondary...input(COMPREFERENCE* my_comp);
void delete-secondary~input(char* comp...yame);
void add~output (COMPONENT' rny.comp);
void add-affected~jnodules (COMP_REFERENCE'

rny..comp);
void delete-affected-mrodules(char' comp-namne);
void show...primary..Anput U;
void show~secondary.~,inpuL C);
void show..affected...moduleso;
void show_outputo;
void show_substepsfl;
void show~preceding...stepsoC;
STEP' get..parent..step U;

#eiciif __ STEPH

*ifndef __DDBDEFINESH
Oinclude "ddbdefines..:."
isend i f

include -Type.h>
djrnclude -Cbject.h>

'~mi:jde atatase~b
n rc- -,- o -ry. h

e >-,:er n C

char *getenv(const char 1);

sir.:lIude - ctype.h>

sinclude 'string.h>

166

ifndef __COMPONENT-y
include 'component .h*
#endif

#ifndef __STEPH
#include Ostep~h"
#endif

STEP: :STEP(APL *theAPL) :C~hject (theAPL),
deadlineC (APL*)Q) ,start-.time((APL*)O),.finish-time((APL*)O)

STEP: :STL-P(char* namie, int s-id):
Object~nazne),deadline(O..,0,O,,), start...tire(O,O,O,O,Q),
finish-rirne(O,O,O,O,O)

initDirectType('Type*iOQ.lookup("STEP"));
step...type = 0;
indicator = 0;
in-~.degree = 0;
step-id = s-id;
estimated-duration =0;
priority = 0;
designer =(char*)0;
status = 0;
required...expertise-level =0;

date-created = setCreationDateo;
date-of-current~status = 0;
base-version.initTorlull(;
part..of initTorulli;
primnar'.~irput_1.ist.Init (new
ListH(Type-)CC_lookup'"CO-MPPEFERENC-EW),this):
seconda-y~inputJI~st.Ini.t ~rew
List((Type')QCjookup('COMP_REFEPENICEi) ,this);

List((Type*)OC-lookup C.OMPCNE~r*) th:.s)
affected-mcdule-list.Init Cnew
List((Type-)OC~lookupv"COMP_REFE-RENICEm.:,his);
substepjlist .Init (new

167

List((Type*)OC-lookup(OSTEP*1)),this);
preceded~by...list.Init (new
List((Type*)OC..lookup(*STEP*)),this);

Type *STEP: :getDirectType()

return (Type*)OC...lookup("STEP");

void STEP: :putObject(OC...Boolean deallocate)

//saves structure of the component lists
((List*)primary...input...list.Binding(this))I-

>putObject (FALSE);
((List*)secondary...input_list.Binding(this))-

>putObject (FALSS);
((List*)Outputjjist.Biflding(this)) -

>putObject (FALSE);
((List*)affected_....odule_list.Binding(this))-

>putObject (FALSE);
((List*)substep...list.Bi-nding(this))

>putObject (FALSE);
((List*)preceded~by...list .Binding(this)) -

>putobject (FALSE);
// ((List*)successor...list.Binding(this))-

>putObject (FALSE);
//saves the component itself

Object:

putObject (deallocate);

void STEP: :deleteObject (OCBoolean deallocate)

//deletes structure of the component lirts
((List*)primary~inputjlist .Binding(this)) -

AdeleteObject (dea~llcate);
((List*)secondary input_list.Binding(this)l-

>deleteObject (deallocate);
((List-)output~list.Binding(this))

,deleteObject (deallocate);
((List*)atfected-rnodul.e-list.Binding(thisvý-

.-deleteObject (deallocate);
((List*)substep_list.Bindinq(this))-

>delete~bject (deallocate);

1 68

((List*)preceded...byjlist.Binding(this))-
>deleteObject (deallocate);

// ((List*)successor...list.Binding~this))
>deleteObject (deallocate);

//deletes the component itself
Object:

deleteObject (deallocate);

void STEP: :Destroy(Boolean aborted)

Entity* ent;
ent = primary..jnput~list.Binding(this);
delete ent;
ent = secondary...input~list.Binding(this);
delete ent;
ent = output~list.Binding(this);
delete erit;
ent = affected..jodule_list.Binding(this);
delete ent;
ent = substep..list.Binding(this);
delete ent;
ent = preceded_by~jist.Binding(this);
delete ent;
// ent = successor~list .Binding(this);
delete ent;
if (aborted) object:

Destroy (aborted);

IIset creation time
time-t STEP: :setCreationDate()

time-t *mytloc =0;
time_t theTime;
return theTime =time(mytloc);

void STEP: :add_substep(STEP* otherstep)

List *chi'ld nodes =(List
*)substepjlist.Binding(this);

if (!this)

169

cout << *<ERROR: cannot add a substep to a null
step\n*;

return;

if (!child-..nodes)

cout << 4<ERROR: cannot add a null substep to a
step\n*;

return;

child~nodes->Insert (otherstep);
child~nodes->putObject U;
putObjecto;

void STEP: :add...predecessor(STEP* otherstep)

List *the-nodes = (List 1
*)preceded...by...list .Binding(this);

if (!this)

cout << "<ERROR: cannot add a substep to a null step

return;

if (!the...nodes)

cout << "<ERROR: cannot add a null substep, to a
step\n*;

return;

this->set~in~degree(this->get~in~degreeo()+1);
the-nodes->Insert (otherstep);
the-nodes->putObjectoC;
putObject U

void STEP: :add~primaryjinput (COMPREFERENCE* iy~comp)

List *the...nodes = (List
*)primary~input..list.Binding (this I;

170

if (!this)

Cout << *<ERROR: cannot add a
COMP-REFERENCE to a null step\nw;

return;

if (!the-.nodes)

cout << *<ERROR: cannot add a null

COMP_.REFERENCE to a step\nw;
return;

the.,nodes->Insert (my...comp);
the-nodes->putObject 0;

// putObjecto;

void STEP::add_secondary...input (COMP...REFERENCE* my~comp)

List *the-nodes = (List
*) secondary~input...list.Binding(this);

if (!this)

cout << *<ERROR: cannot add a

COMP...REFERENCE to a null step\nl*;
return;

if (!the...nodes)

cout << "<ERROR: cannot add a null
COMP_REFERENCE to a step\nw;

return;

the-nodes->Insert (iy~comp);
the_nodes->putObject U;

// putObjecto;

void STEP::add~output (COMPONEI'T* my~corp)

List *the~nodes = (List
*)output-list.Binding(this);

171

if (!this)

cout << *<ERROR: cannot add a COMPONENT
to a null step\n";

return;

if (!the-.nodes)

cout << u<ERROR: cannot add a null
COMPONENT to a step\nO;

return;

the-nodes->Insert (rnycomp);
the~nodes->putObject o;

// ~putObject(;

void STEP::add..affectedjnodules (COMP._.REFERENCE* my...comp)

List *the-nodes = (List
*Iaffected~jnoduleý_list.Binding(this);

if (!this)

cout << "<ERROR: cannot add a
COMPREFERENCE to a null step\n";

return;

if (!the-nodes)

cout << "<ERROR: cannot add a null
COMP...REFERENCE to a step\nw;

return;

the_nodes->Insert (mny~comp);
the_nodes->putobject o;

// putObjecto;

void STEP: :delete-priznary input (char* my...comp)

OCBoolean FOUNhD=FALSE;
List *rny-list =

(List* Iprimary...input...list .Binding (this);

172

COMP..REFERENCE * the~comp;
while(my..jterator.znoreData C)&& !FOUND)

the...comp
(COMP_.REFERENCE*) (Entity*)rny~iterator();

if(strcmp(the~comp, ->get...priv..nameo,
zny..comp)==O)(

>Index(the~comp)); Y.ls>Rmv(ryit-
FOUND =TRUE;

void STEP: :delete~secondary~input(char* my...comp)

OCBoo lean FOUND= FALSE;
List *my-list=

(List*) secondary-input~list .Binding(this);
Listlterator my...iterator(my~jist);
COMP_REFERENCE *the~comp;
while(ny~iterator.znoreData0&& !FOUND)

the-.comp
(COMP_ýREFERENCE') (Entity*)my...iteratorU;
if(strcmp(the~comp ->get...priv~nareo,
my~comp)==O) (

lTyyjist->Rexnove(my_list-
>Index(the_comp));
FOUND a TRUE;

void STEP: :delete...affected..jodules (char* my~comp)

OC-Boolean FOUND=FALSE;
List *my...list=
(List')affected_n~odule~list.Binding(this);
Listlterator my...iterator (niylist);
COMP_REFERENCE *the...comp;
while (my iterator.moreData C)&& !FOUND)

the~comp

173

(COMPREFERENCE-) (Entity*)my..iteratoro;
if Cstrcrnp(the..comp ->get...priv...nameU,
my-.comp) ==O) (

my..list->Remove (my~list-
>Index(the~comp));
FOUND =TRUE;

COMP...REFERENCE* STEP: :get.ýbase_ýversion()

return
(COMP...REFERENCE*) base~version.Binding (this);

STEP* STEP: :get~parent..step()

return (STEP*)part~of.Binding(this);

void STEP: :show~primary...input()

List *my-list

Listlterator myiy~terator(niy..list);
COMP...REFERENCE * the..comp;
// cout«< sPrimary inputs:

while (my..iterator .moreData o)

the_comp=
(COMPREFERENCE*) (Entity*)!ry.iteratoro;
the...comp, -> displaycornpf;

void STEP: :show...secondary...input()

List 'rny..list
(List*) secondary...input~jist .Binding (this);
Listlterator rny..iterator(mry...list);
COMPREFERENCE *the_comp;
// cout«< zny.list->Cardinality() «"\n*;
while (uiy.iterator.moreDatao)

174

the..comp
(COMP-REFERENCE*) (Entity*)mry~iterator U;

the_coxnp -> displaycornpt)

void STEP: :show...affected~modules()

List *myjlist
(List*)affected-module-list.Binding(thiS);

COMP...REFERENCE * the~comp;
// cout«< rny..list->Cardinality() <<\n-;
while(my...iterator.moreDatao)

the..cornp
(COMP...REFERENCE*) (Entity*)my-.iterator U;

the~comp -> displaycompU;

void STEP: :show~output()

List *ny...list = (List*)output~list.Bjflding(this);
Listlterator myiterator(my~list);
COMPONENT *the_comp;
// cout< O\nstep outputs:

while (my...iterator .moreData U)

the_comp
(COMPONENT*) (Entity*)rny..iteratoro;
cout «<the_comp ->CompnentNan'e ;

void STEP: :show...substeps()

List *nly-.list = (List*)substep...list.Bifldiflg(this);
Listlterator my...iterator(iW...list);
STEP *the...step;
// cout< nmy~list->Cardinality() <<"\no;

while (my..iterator .moreData U)

the_step

1 75

(STEP*) (Entity*)myjiteratoro;
the~step-> displayStepjid ;

void STEP: :shc~w..preceding..steps()

List *ruy-..list
(List*)preceded~by~list.Binding(this);

Listlterator my..iterator(my..list);
STEP *the...step;
// cout<< O\nstep predecessors:
mnt i=O;

IIcout«< niy..list->Cardinality() <<\n";
while (myjiterator.moreL~ata U)

1 = i+l;

the..step
(STEP*)(Entity*)my-..iteratoroU;

cout «<the_step-> get...stepidU';
if (i< rny...ist->CardinalityU')

cout <e",";

void STEP: :displayStep...id(

cout << step-.id << a

COMP..REFERENCE: :COMP_.REFERENCE (APL *theAPL) :Obj ect (theAPL)

COMPý_REFERENCE: :COMP_REFERENCEo(

initDirectType((Type*)OCjlookup(*COMPREFERENCE"));
priv-.name= Cchar*) 0;
version...no=0;
variation_no=0;

Type* COMPREFERENCE: :getDirectType()

176

return (Type*)QClookup("COMPREFERENCES);

void COMPREFERENCE: :displaycompo(

cout «<priv..naxne <<"\n";

stepOperations.h

#ifndef__STEPO.PERATIONSH

#define _STEP _OPERAIIONS-H

#include "component~h'

#include "step.h"

*include "support-.classes.h"

#include "tex:...object~h"

char* get~red.Qfextension(char* comp,..name);

void create...step(char* dbname,char* protoname, char* comp--namne);

void show..step(char* dbname,int stcp...id);

void show...steps(charl dbname~char* aName);

void Add-primary-input(int step..id,char* comp...name);.

void Deleteprimary-input(int step~id.char* comp..name);

void Add...secondary-input(int stepid~char* comp-.name);

void Delete-sevondary-input(int step-id,char* contp..name);

void Add-affected-modules(int step-id.char* comp-name);

void Delete-affectecimodules(int step-id,char* comp-name);

void Update-precedence(int stepjid,int preceding...step-id);

void Update..prionity(int step-id,int value);

void Update expertise level(int step.Jd~int val ue),

void Update-deadline(int stepjid~char* theDate);,

void Update-estimated-duration(int step-jd~int value);

177

vod pdt~sar-tm~car dnmein se-i~car Featl
void Update-fin.sar-ime(char* dbname,int step-id,char* theDate);

void Update...status(char* dbname,int step .jd~int value);

void Update...esigner(char* dbname,int step-id,char* aName);

void get...scheduling...data(char* dbname, int step-id, char* curr-time);

void get...Sched-data...I1(char *dbname~char* IistName,char* curjtime,char*

d-.name);

void get...scheduling...data-..2(char* dbnarne, char* currý_time, char* d_name);

void get..commit...data(char* dbname, int step-id);

void set-secondary-input(STEP* a~step,char* compPath);

void setaffected...modules(STEP* a_step, char* protoName,char* comp-name).

void create_substep(char* dbname~int step-id~char* p-input,

char* d...name~char* theDate, int duration);

STEP* create-substep(STEP* the-..step, char* p-input);

void auto_create~substeps(char* dbname,int step-id);

void comrnit~step(cbar* dbname,int step-id);

void commit_substep(char* dbnamc,int step-id);

void remove-stepjfrom...schedule(char* dbname~char* stepjid,char* myDate);

void remove-step..fromnsched(int step~id).

void Update...Step(char* dbname,int step-id,char* theDate.

char* p-inputA, char* pjinputD,

char* s-inputA, char* s.jnputD,

char* a-inputA, char* a-inputD,

int pri..yalue, mnt prec..ylaue,

irn dur-vlaue, int exp-jevvel);

void step-.update(int stepjid~char* theDate.

char* p-inputA, char* p-inputD.

char* s-inputA. char* s-inputD,

char* a-inputA, char* a-inputD.

178

in! pri-value, int prec-.vlaue.

int dur-vlaue, int expilevel);

void save-step-old-values(STEP* a-..step);

void Undo...step...update(char* dbname~int step-id):

void dump-step..components(char* dbname. in! step .jd);

void find-assigned-step(char* dbname, char* user).

void suspend-abandon~step(char* dbname,int step-id. int new-status),

void update-base_versions(int step-id,char* tempi)-.

void Update-deadline(char* dbname,int step-id);

void Early...warning(char* dbname, char* myTime);,

#endif fl __STEPOPERATIONS-.H

#include <Database.h>.
#include <Dlrectory.h>
#include <string.h>
#include <Set..h>
#include <stdlib.h>
#include OMyString.h"
#include Ocomnponent .h"
#include "step.h*
#include usupport~classes .h"
#include "text~object .h"
#include "compOperat ions .h*
#include "step~operations .h"
#include "sched.h-
#include "sched~p.h"
#include "person.h"

static char *Level[3] = {"Low*, "Medium", "High");
static char *Status[6] =
""proposed", "approved", "scheduled", "assigned", "completed", "a
bandoned");

extern char *thepath;
extern int warning...time;
extern char *dirNamePtr;

179

extern char 'DESIGNDATABASE...DIRECTORY;

char* get...red of_extension(char' comp~name)

char my~wordll2BJ;
char 'word[7];
char* separator=-.'
word[O] =strtok(comp...name, separator);
int i=O;
while(wordtil !=NULL)(

word[i] =strtok(NULL, separator);

int k = i-3;
if(k==O) return word(O];
else(

if(k==l)(
sprintf (my...word, w%s%s%s* word[O], * ,word[l]);
return rnyord;

else{
if(k==2)(

sprintf(ry~word,"%s%s%s%s%s',word[O],w.",word(l],".",word(2)

return my word;

else(

sprintf(my...word, "%s%s%s%s%s%s%s',word(O], . ",word~l],
,I"word[21,"."word[3Jh;

return myword;

STEP' find-step(int step~id)

OQ.Boo lean FOUND=FALSE;
Set *aSet = (Set *)OC_lookup("step~set");

// Abort if there is no set
if (aSet == NULL) (

cout << "there is no steps in database yet.\n";
return NULL;

180

1/cout << aSet--'Narne) << " has " << aSet->Cardinality()

// Ask the set object for an iterator
Iterator' anlterator =aSet->getlteratoro;

STEP* the_step;
// For each item in the iterator
while(anlterator->moreData()&& !FOUND)

// Get the item
the-step=(STEP') (Entity ') (anlterator->operator0())

if (the..step->get~step~id ()==step...id)
'-OUND = TRUE;

i f(FOUND]
return the...step;

else
returni N4ULL,

void find_assigned..step(char* dbname, char* user)

OC_open (dbname);
OC-transactionStart U;
OCBoolean FOUND = FALSE;
Set *aSet = (Set *)OC-lookup('step..set');
Iterator* anlterator = aSet->getlteratoro;
STEP' the_step;
// For each item in the iterator
while(anlterator->moreDatao && !FOUND)
the...step=(STEP*) (Entity ') (anlterator->operator() U;
if(the~step->get~designer() !=O) (
char' salan= new char(strlen(the..step->get...designer())+lJ;
strcpy (salah, the~step->get...designer U);
if(strcmp(salah,user)==O && the_step->get_status()==3 &&

the_step->get_indicatoro==O){
FOUND = TRUE;
char my~name[16]
sprintf (my...name, "%s%s%d", ".","step_*, the...step-

>get~step~ido);
cout << "F" << "\n";
cout << my-..name << *\n-;
cout << the_step->get~stepJd() << "\n";

181

if C!FOUND) cout << ON" << "\n";
OQ.-transactionCormmit U;
OC_closeU;

void dump...step...components(char* dbname,int step_id)

OC-open(dbname);
0C..trarisactionStart U;

char ny~narne(8];
char protoname(64];
STEP* the..-step= find-step(step...id);
sprintf(my...nare, w%d',the_step->get~step..jdl);
My...String

temp=My...String(.w)*MyString(wstep....)*My.String(my-name);
dirNamePtr =(char*) temp;
COMP_REFERENCE' my...coznp= the~step->get~base~version U;

char *tenip2=ny~comp->get..priv..narneo;
Pit var=my~comp->get~variation-noo;
mnt ver=ny~comp->get~version-nooU;
sprintf(protoname. "%s %d:%do, temp2,var, -ter);

List *my..list=the-step->primary...input U;
COMPý_REFERENCE' my...ref =(COMP...REFERENCE) my....ist -

>getEntityElement (0);
char' check = my-..ref->get..priv.name()+strlen(rny..ref-

>get...priv..namne() -10;
if(strcznp(check,..spec.psdlw)==0){
My...String temp=MyString(my~ref->get..priv~nameo))-10;
char' comp-name =(char') temip;
DunmpConiponent (protoname, comp...name);

else(
MyString temp=MyString(my...ref->get~priv_narne() -9;
char' comp-name =(char') temp;
DumpComponent (protoname, comp...name);
List *my~list=the..step->secondary.Jnput U;
Listlterator my-i.terator(zny..ist);
while (ny...iterator .noreData U)

COMP_REFERENCE*
ny-comp= (COMP-REFERENCE*) (Entity*)my-iteratoro;

My_.String temp=MyString(my~comp->get~priv-namne)) -

10;

182

char* comp~name =(char*) temnp;
DumpSpecFilel (protoriame, comp~nane);

the...step->set_indicator(l);
the~step->putObject o;
0C..transactionCommit o;
0C-closeo~;

void Early..warning(char* dbname, char* myTime)

0C..open(dbname);
0C-.transactionStart U;
int my...id;
Time Tl(myTirne);
List *aList = (List *)OC~lookup("MySchedule");
if (aList != NULL){

Iterator' my~iterator = aList->getlteratoro;
// For each item in the iterator
while(my_iterator->moreDatao){
Schedule* nextAssigriment =(Schedule*)

(Entity*) ((my~iterator) (f;
if(nextAssignment->AssigruTnentFiflisho- Ti <=

warning.t ime)

sscanf(nextAssignxnent->Name(), "%d", &mry-id);
STEP* the-step=find...step(myjid);
if(the..step->get...status()== 3 && the~step-

>get..indicator()o 2)

cout << the~step->get..~designer() <<«~
the~step->set...indicator(2);

the...step->putObjectoU;

OC..transactionConmit U;
0C~cioseo;

void show..step(char* dbnarne, mt stepjid)

OC-open(dbname);

183

OC-transactionStart U;
STEP* the-step~find~step(step..id)

if (the-step !=NULL)(
COMP...REFERENCE* my..comp = the_step-

>get...bane..vers ion U;
cout <my~comp->get...priv~name() <<

<< mycoznp->get...ariatiofl_no()
«< n << mycomnp->get..version_iio(<<"\n";

cout <<the~step->get~estimated...duration) <<"\n";
cout <<the~step->get~priority() << \n";
cout <<Level(the...step ->

get~required~expertise-level C)

cout «<the...step->get...esigner() << '\n**;
cout «<the~step->get~deadline() makeStringo() n*
cout <<the~step->.get..start-Lime().makeString() <<

cout «<the~step->get~finish...time().makeStringo <<

the~step->show~primary...input U;
List* niy.list=the..step->secondary...input U;
cout << my~list->Cardinality) << "\n*;
the...step->show...secondary-i.nput U;
my~..list=the...step->affected_module U;
cout << rny.list->Cardiriality) << O\n*;
the..step->show affected~modules U;
my~list=the..step->substep U;
int n = xny..ist->Cardinalityo;
cout << my_list->Cardinality() <<"\
the~step->showsubsteps U;
my_list=the..step->preceded...byo;
if (n==O)
cout «<my..list->Cardinality) << "\non;
else
cout << OWn «my_list->Cardinality) << "\no;
the~step->show~preceding~steps U;
cout << "\n" << O\nw;

0C-trarisactionComrnit U;
OC-..closeo;

void get~conunit_.data(char* dbname, mnt step...id)

OC-open(dbname);

184

OC-transact jonStart U;
STEP* the~step=find~step(step-id);
if(the~step !=NILL){
the..step->get_base...ersion()-ý>displaycorr~po;
the.~.step->show..priinary..Jnput U;
the...step->show...output U;

QC)CtransactionCommit U;
OC-.close U;

void get~scheduling...data_2(char* dbname, char*
curr...time char* d-name)

OC~open(dbname);
OC-transactionStart U;
int rny.id;
Time Ti (curr-time);
Time T(0,.0,0,0,0);
List *aList = (List *)OC~lookup("MySchedule");
if(aList != NULL) (

Iterator* myjiterator = aList->getlteratoro;
// For each item in the iterator
while~my_iterator->moreDatao)
Schedule* nextAssignxnent = (Schedule*)

(Entityt) (try iterator));
sscanf(nextAssigrnment->Name(), "%d", &my~id);
STEP* the...step=find...step(my...id);

if(the~step->get...statuso==2 11
(the_step->get_statuso==!2 &&

strcmp(the~step->get...designer(),d~name) ==0))(

mnt T2= the~step->get...deadiine() - Ti;
if MT < 0)
cout «<"1000" << "\nN;
else
cout <<T2 <<« \"
Cout «<the..step->get~priority) << "\n";
cout «<tha..step->get~estimated~duration) <<"\n**;
cout <<"[";
the~step->show~preceding...steps U;
cout <<O \nO;
cout «<Level (the~step-

>get~required..expertise...level UV« "N\n";
cout << the..step->get...in...degree) <<-\'

185

OC..transactionCommit U;
OC..~close U;

void get...scheduling...data(char* dbname, int stepjid, char-
curr-time)

0C..open(dbname);
OC-transactionStart U;
irit my.Jd;
Time Ti (curr-..time);
Time T(0,0,0,0,0);
List *aList = (List *)OQ..lookup("MySchedule");
if(aList != NULL) (

Iterator* my..iterator = aList->getlteratoro;
// For each icem in the iterator
while (myiy.terator--~moreData U) (
Schedule* nextAssignment = (Schedule*)

(Entity*) ((*my-.iterator)MC)
sscanf(nextAssignnient->NameU, "%d", &my...d);
STEP* the-step=find...step(my..Jd);

if(the...step->get-statusfl==2)(
cout << the_step->get~step...idfl« "\no;
mnt T2= the..step->get..deadline() - Ti;
if (T < 0)
cout <<41000~ << \nu;
else
cout <<T2 << O\fW;

cout «<the...step->get...estimated...duration() «"\n";
cout <<O{U;

the_step->show...preceding...steps U;
cout <<"I \no;
cout «<Level [the~step-

>get~required~..expertise_level U]
<< *\no;

cout << the~step->get~in~degree() <<«~

186

STEP* a-step=find..step(step~id);

if (a~step->get.~.status() 1 I a...step->get...step..typE1)
~=0)

cout << "Cannot schedule None approved step or part
of a top step- <<-\-

else(
List* my-list=a..step->substepC);

STEP *the....step;
while(niy~iterator.rnoreDatao))

the-..step = (STEP') (Entity')rny.iterator()
cout << the.~.step->get~step..jdo< "\n";
int T2= the...step->get~deadline() - Ti;
if (T < 0)
cout «<"1000" << "\n";
else
cout <<T2 << "\n*;
cout «<the..step->get...priority) <<"\"
cout «<the~step->get...estimated...duration() <<"\n";
cout «"{"*;

the...ste; --show~preceding...steps o;
cout «"1) \n";
cout «<Level [the...step-

>get~required..expertise..level U]

cout << the...step->get...in~degree() <<«\

OC-transactionCormnit U;
OC...closeo;

void getSched_dataj (char 'dbnarne, char* listNamne.char'
cur-time,char* d..name)

OC~..open(dbname);
OC-transactionStarto;
mnt rny.Jd;
List *aList = (List *)OC-lookup(1istNamne);
if(aList == NULL) (

/1 cout << "No Such Schedule .. \"
OC-.transactionConimit U;

187

OC-..close U;
return;

Time Ti (cur-.time);

Iterator* anlterator =aList->getlterator()

IIFor each item in the iterator
while(anlterator->moreDataU')

Schedule* nextAssignment = (Schedule*)
(Entity*)W((anlterator) U)

sscanf(nextAssignment->Nameo, *%d", &my....d);
STEP* the..step=find-step(rnyjd);
if (the~step->get...statuso()==3 && strcmp(

the...step->get...designer(),d~narne) !=O)(
cout << nextAssignment->Nazne(<<"\n*;
int T3=nextAssignment-> AssignmentFinish()-Ti;
cout <<T3 <<"\n*;
cout << nextAssignrnent->AssignedDesigner) <<"\'

delete anlterator;
0C-transactionCommuit U;
OC-closeo;

void remove~step...fromtýschedule (char* dbname. char*
step-id,char* xnyDate)

QC~open(dbname);
OC-transactionStartoC;
deleteAssign~men'tl ("MySchedule", step,..id);
Time T(myDate);
int my..step..id, aniid;
sscanf (step-..id, R%d",ani)
STEP* the...step=find_step(an...id);
char* dname=the_step->get...designerU;
Person* aPerson=(Person*)OC-lookup(dname);
if(aPerson != NULL)(
aPerson->PersonStatus (0);
aPerson->putObject U;

the~step->set_finish..time(T);
the...step->putobject U;
Time T2 = the...step->get-start_timeo+the...step-

>get_estimated~durationU;

188

.Lf((T2 - T)==O)

else
coat «*R" <<"\n';

List 'aList =(List ')QC_lookup(*MySchedule');
if(aList z=NULL){
1/ cout << *No Such Schedule .. \"

OC-transact jonCommit o;
0C..close()
return;

Iterator* anlterator =abist->getlterator();
// For each item in the iterator
while(anlterator->moreDaraM (

Schedule* nextAssignment = (Schedule*)
(Entity')W((anlterator) ()

sscanf(nextAssignment->Narne(), %d%, &my..step..id);
STEP* mystep=find~step(my~stepxid);
if(nmy..step != NULL){

List* mryjlist =my.~.step->preceded_byo;
Iterator* my_..Iterator = my..jist->getlteratorO;
while(rnyterator->irnoreDataO)

STEP* a...step=(STEP*) (Entity') ((my...Iteratori ())
if(a_step-,'get...step~ido== an id)
my~step->set in~degree(my step->get...in~degree.)-

my...step->putObject H;

if (strcmrp(dnanie, nextAssignment-
>AssignedDesigner())==O) I

cout << my..step->get..step~id() «\n";
cout << dname «<"\n';

else(
Person* aPerson= (Person*)OC_lookup(

nextAssign~ment->AssignedDesigner (H;
if(aPerson != NULL)(

if (aPerson->PersonStatus C)==O)
cout << ntystep->get~step~id) <<"\n';
cout << nextAssignment-

>AssignedDesignerOC)<<'z\n';

189

OC-transact ionCommnit ;
OQ..close U;

void remove~stepjfrom-sched(int step..id)

char rwy-idf8];
sprintf(rny_id, *%d",step-.id);
int my~step..jd;
deleteAssignrnentl (MySchedule", nrrrjd);
STEP* the...step=find_step(step...d);
if (the-step !=NULL){
char* dname=the_step->get~designerU;
if (the_step->get_status) 3){

Person* aPerson= (Person*)OC_lookup(dname);
if(aPerson != NULL)(
aPerson->PersonStatus(O);
aPerson->putObject U;
cout <<stepid << "\n";
cout << dname .<< \'

List 'aList = (List *)OC.,jookup("MySchedule");
if(aList == NULL)(
1/ cout << "No Such Schedule .. \"
return;

Iterator' anlterator = aList->getlteratoro;
// For each item in the iterator
while(anlterator->moreDatao) t.

Schedule' nextAssignment = (Schedule*)
(Entity') C('anlteratorM) (

sscanf(nextAssignxnent->Niame(), "%d*, &my~step..id);
STEP' my...step=find-step(my..stepjid);
iftrny...step !=NULL){

List' myilist = my...step->preceded...byo;
Iterator' myIterator = my lisr'-,getIteratoro;
while(my..3terator->moreDatao) i

STEP' a~step=(STEP') (Entity') (('my-..Iterator) (U;
if(a...step->get~stepjid()== step..jd)
my...st~p->setin~dearee (my..step->get..in..degree ()-

190

mv...step->putObject U;

void suspend-abandon...step(char* dbname..int step-id, int

new-status)

OC~open(dbname);
0C-transactioflStart U;
Time T(0, 0,0,0,0);
STEP* mny..step~find...step(step...id);
if(my..step !=NULL){

if(m~y_step->get..step...typeoU0) (
List* my..list=my...step->3ubstep()
Liztlterator my._.iterator(my...list);
while(niy_iterator.moreDatao)(

STEP* a...step=(STEP*) (Entity*)myjiteratoro;
a_step->set...statzus(new-status);
a_step->putObject U;

my~step->set...status (newstatus);
my..step->putobject U;

else
if (mystep->get...status (== 211 my~step->get.-statuso(

if C. ~step->get...step..typeo()==0) (
List* rny..list=mnv.step->substepO;

while (nyiterator.moreData()) (
STEP* a-step=(STEP*)(Entity*)my_iterat~oro;
remove~step...fromr_sched (a~step-

>get..step-i.2d C))
a..step->set....tatus (newý_status);
a...step->set...start...tixne T);
List' ajlist~a_step->preceded..byo;

a..step->set.in~degree(ajlist->Cardiflalityo);
a..step->putObjec*t U;

191

my~step->set...status(new-status);
my..step->set start_time(T);
my..step->putObject C;

else{
remove..stepjfrom_sched(step_id);
my~step->set...status (new-status);
my...step->putObject U;

OC-transactionCornmito;
OC-closeo;

void showý_steps~char* dbname,chdr* aName)

0C..open(dbname);
OC-transact jonStart U;

Set *aSet = (Set *)OC~lookup(*step~set");

//Abort if there is no set
if (aSet. == NULL) (

cout << *there is no steps in database yet.\n";
return;

cout << aSet->Name() << has « < aSet ->Cardinal ity(«
items. \n\n";

// Ask the set object for an iterator
Iterator* anlterator a aSet->getlteretoro;

// For each item in the iterator
while (anlterator->mcreData U)(

// Get the item
STEP* the-..step=(STEP*) (Entity *) (anlterato. -

>operatoro() ;)
// Print out its name and value
if(strcmp(aName, "all")==O)
cout << the-..step->get...step...id() <<" Status:

<< Status (the...step->get~statusO< ()] \n';

192

else(
if(strcmp(aNamne,"top*)== 0)(

if (the-..step->get...step...type ()==O)
cout << the~.step->get~step...id() << Status:

<< Status (the..step->get~status ()] '

N~n'}

else
if (strcmp (a~ame, Status (the~.step-

>get~status () I)==O)
cout << the-step->get...step...id() <<

Status:
<< Status[the..step->get..status() J« "\nl*;

IIBe sure to cleanup heap based iterators
delete anlterator;

OC-transactionCommit U;
0C..close U;

void Add...primary...input(int step...id,char* thename)

if(thename[O) !=101){
char cornp..naxne(64];
ir~t var, ver;
sscanf(thenarne, "%s %d:%do,corpnpjame, &var, &ver);
STEP* a_step=find...step(step~id);
if(a...step !=NULL)(
COMP...REFERENCE* my...ef=new COMPREFERENCEO;
my ref->set..priv....namne(comp_..name);
mv..ref->setversion~no (ver);
my..ref->setvariation._.no (var);
my~ref->putobject U;
a...step->add...priniary...input (my...ref);
a_step->putObjectfl;

else
cout «<*STEP: * < step...id <<* is not in the

DDB\ng;

void Delete~primar-y..input (it step...id, char* comp~nanme)

193

if(comp..name(O] !=10){
STEP* a-.step=find-step(step...id);
if(a...step !=NULL)(

a~step->delete...primary...input (conp~nan,-);
a~step->putObjecto;

void Add_secondary...input(int step...id,char *thenarne)

if(thename[O] !='O')
char comp...name(64];
int var, ver;
sscanf(thename, "%s %d:%do,conmp..name, &var, &ver);
STEP* a-stepzfind...step(step~..id);
if(a~step !=NULL)(
COMPREFERENCE* nw...ref=new COMP..REFERENCE U;
my..ref->set...priv__.name (comp...name);
my~ref->set...version~no (ver);
my~ref->set...variation...no (var);
my...ref->putObject 0;
a..step->add.secondary...ifput (my-ref);
a..step->putObject 0;

else
cout «<"STEP: " << sep...id << is not in the

DDB\n*;

void Delete~secondary..jnput (it step...id, char* comp...nanie)

if(comp..name[Ol !=101)(
STEP* a...step=find.step(step..id);
if(a..step !=NULL)(

a..step->delete secondary..input (conp~name);
a-step->putObjecto;

void Add..affected~jnodules (it step...id, char* thename)

if(thenane[OI !=10,){
char cornp..name[64];

194

int var, ver;
sscanf(thename,m%s %d:%d",compjiarne, &var, &ver);
STEP* a-step=find~step(step...id);
if(a-step !=NULL){
COMPREFEiRENCE' mry~ref=new COMPREFERENCEOC;
my~ref->set...priv__.name Ccomp...narne);
niy..ref->set~version..no (ver);
my..ref->set...variation-no(var);
rny..ref->putobject U;
a-step->add-affected-modules (mryref);
a...step->putobject U;

else
cout <<STEP: * << step..id << is not in the

DDB\n*;

void Delete-affected~jnodules (mt stepjid, char* conp~name)

if(coinp..namet0l !=101){
STEP' a-step=find-step(step...id);
if(a,..step !=NULL)[

a_step->delete_affected_.modules(comp...name);
a_step->putObject U;

void Update...precedence(xnt step..id,int preceding~stepmid)

OCBoolean FOUND =FALSE;
if(preceding~step~id !=O) (
STEP* a~step=finnd_step(step...id);
if(a...step !=NULL)(
STEP* the~step=find~step (preceding...step-.id);
if (the_step) (
List* the-list= a~step->preceded...byo;
Listlterator the-iterator(the...list);

while(the-iterator.moreData U)

STEP* stepl=(STEP') (Entity*)the...teratoro;
if (stepl->get~step~id()== preceding~step~id)

FOUND = TRUE;

if(C!FOUND)(

195

a...step->add...predecessor (the-step);
a~step->putobject U;
if (the..step->get~step...typeo()==O && a..step-

>get...step..typeoU==O)(
COMP_.REFERENCE' m~y~ref=the_step->get_base_versionU;
COMPREFERENCE* my...refl=a_step->get_base_versiono;
if(strcnip(niy~ref->get~priv...namefl, rny..refl-

>get..priv.npame C) ==O &&
my~ref->get_ývariation~no()== my~refl-

>get_ývariation...no(&&
myref ->get~version...no()== rny..ref 1-

>get_ýversion~noU)(
List* mny-list = the...step->substepo;

Listlterator my_iterator(myjlist);
while (my...iterator.moreData U)

STEP* my...step=(STEP*) (Entity*)my...iteratoro;
List* a-ljist = my...step->priinary...inputo;
COMP_REFERENCE* a~ref= (COMPREFERENCE')a_list-

>getEntityElement (0);
cout «'Ofirst: 0<< a~ref->get~priv._.name) << O\n*;

List' my-listi a~step->substepo;
Listlterator my...iteratorl (my..listl);
while (my~iteratorl .moreDataU) (

STEP' my~stepl=(STEP') (Entity')my..jteratorl();
List' a_listi = ny~stepl->prirnaryjinputo;
COMP_REFERENCE' a_refl= (COMP_.REFERENCE*) a..istl -

>getEntityElemeit (0);
cout «<*second: "<< a~refl->get..priv_nameo) << \n";

if (strcmp(a~ref->get...priv..namet), a~ref -
>get.,.priv..name C) ==0) (

my...stepl->add..predecessor (mny...step);
my..stepl->putObject U;

19

in the DDB\no;

void Updatejpriority(int step~id.,int value)

if(value !=O)(
STEP* a~step=find...step(step...id);
if(a,..step !=NULL)(

a...step->set~.priority (value);
a...step->putobjectof;

else
cout <<"STEP: 0 << step~id <<" is not

in the DDB\no;

void Update~expertisejlevel(int step...id,int value)

if (value !=S)(
STEP* a...step=find-step(step...id);
if(a-.step !=NULL){

a_step->Set...required..expertise-level (value);
a_step->putObjecto~;

else
cout <<STEP: 0 < step~id <<" is not in the

DDB\n*;

void Update~status(char* dbnaxne,int step...id,int value)

OC..open (dbnazne);
OC..transactionStart U;

STEP* a_step=find..step(stepjid);
if(a...step !=NULL){

a_step->set_status(value);
a_step->putobject U;
if (value == 2 11 value ==3)

STEP* rry.step= a~step->get...parent~stepo;
if(my~step!= NULL)(

if (mnystep->get~statuso< value)(
my...step,->set...status (value);
my...step->putObject U;

197

else
cout <<"STEP: << step...id <<" is not in the

DI)B\n";
OC-transactionConmmitof;
OC...close U;

void Update_deadline(int stepjid,char* theDate)

if(theDate(O] !=O && theDate(lJ !=O)(
STEP* a...step=find~step(stepjid);
if(a...step !=NULL){

Time theTirne(theDate);
a_step->set...deadline(theTime);
a~step->putobject U;

List* miy-.list = a...step->substepU';
Listlterator an_iterator(my-.list);
while (an-..iterator .moreData U)

f
STEP* nmy~step=(STEP*I (Entity*)an_iteratorfl;
my~step->set~deadline (theTime);
my~step->putObject U;

else
cout <<STEP: 0 << step~id <<" is not in the

DDB\fl";

void Update~deadline (char* dbname,int step...id)

0C~open(dbname);
OCCtransact ionStart U;
OC-Boo lean FOUND=FALSE;
char anjid(8];
Time T(0,0.,0,0,0);
sprintf(an...id, "%d".step...id);
STEP* a~step=findcstep(step~id);
if(a...step !=NULL)(

List *aList = (LiJst *)OC_lookup("MySchedulem);

198

if CaList 1=NULL){

Iterator' miy..iterator = aList->getlteratoro;
// For each item in the iterator
while (my..iterator->moreDataoC)&& !FOUND)
Schedule* nextAssigriment = (Schedule*)

(Entity') C(*my-.iterator) C)
if(strcmp(naxtAssign~ment->Name() an..id)==O

FOUND = TRUE;
T = nextAssignxnent->AssigrnmertFinish();

STEP* the-step=a...step->get...pareflt...stepo;
the~step->set..deadline CT);
the..step->putObjectoL;
List* my-.list = the-step->substepo;
Listlterator an-iterator(my..jist);
while(an-.iterator .moreDataC))

STEP* ny~step=(STEP') (Entity')an_iterator();
my..step->set...deadline (T);
my...step->putObject 0;

OC...transactionCommit U;
OC-close U;

void Update...estimated.duration~int step...id,imt value)

OC-Boo lean FOUN'D= FALSE;
char an...id[S];
if (value !=O)(
sprintf Can-.id,w%d .step..id);

STEP' a..step=find...step(step...id);
if(a...step !=NULL)(

if(a...step->get_status ()==3) {
int n = value - a-step->get-estimated_durationo;
List 'aList = (List *)OC~lookup(*MySchedule");
if~aList != NULL) (
Iterator' my~iterator = aList->getlteratoro;
// For each item in the iterator
while (my-i.terator->moreDataoC)&& ! FOUND)
Schedule' nextAssignment = (Schedule')

(Entity') ((my~..iterator)MU;

199

if(strcrnp(nextAssignment->Narneo,an..id)==OH
FOUND = TRUE;
nextAssignment.->ASsignmentFinish(nextAssignment-

>AssignznentFinish()+n);
nextAssign~ment->putObject U;

a...step->set_estimated_duration(value);
a..step->putObject U;

else
cout <<*STEP: "«< step...id <<" is not in the DDB\n';

void Update~start~time(char* dbname,int step..id. char*
theDate)

OC...open(dbname);
OC-transact jonStart U;
Time T(0,0,0,0,0);

STEP* a-step=find..step(stepjid);
if(a-step !=NULL){

Time theTime(theDate);
a~step->set..start~time(theTime);
a~step->putObject U;
STEP- the...step=a~step->get...parent~step U;
if (strcmp (the..step-

>get_start_timneo.makeStringo,
T-makeStringo) ==O)(

the~step->set..start~time(theTime);
cout << "done" << O\jn*;

the..step->putObject U;

else
cout <<"STEP: * < step...d <<" is not in the

DDB\nn;
OC-transact ionCormnit U;
OC_closeo;

void Update...finish_time(char* dbname,int step...id,char*
theDate)

200

QC...open (dbname);
0C-transactionStart U;

STEP* a...step=find-.step(step..id);

Time theTime(theDate);
a~step->set-finish-tire(t~heTime);
a~step->putObject U;
STEP* the-step=a...step->get..parent..stepo;
if(theTirne > the-step->get_finish_timeo){

the~step->setjfinish...time(theTime);
the~step->putObject U;

else
cout «<STEP: "«< step...id <<" is not in the

DDB\n";
OC-transactionCommit U;
OC...closeo;

void Update~designer(char* dbnaxne,imt step...id, char* aName)

OC-open (dbname);
OC-transact ionStart U;

STEP* a...step=find.step(step...id);
if(a~step !=NULL){

a..step->set..designer (aName);
a_step->putObjectU;

Is
else

cout <<*STEP: « < step..id << is not in the
DDB\n";
OC-transact ionCouunit U;
OC...closeo;

void Update_..Step(char* dbname,,int step.Jd,char* theDate,
char* p.~.inputA, char* p...inputD,
char* s...inputA, char* s...inputD,
char* a_inputA, char* a...inputD,
mnt pri...value, int prec..vlaue,
mnt dur_ývlaue, mnt exp...evvel)

OC...pen(dbname);
0C-transactionStart U;

201

STEP* a-.step=find-step(stsep_id);
if(a...step !=NULL){

if(a~step->get...statuso<= 1.)

step..updatte(step~id~theDate,p..inputA,p...inputD,s~inputA s-inp

utD,

a...inputA,a inputD,pri value,prec~vlaue,dur...vlaue. expjlevvel)

a~step->putObject U;
cout << "do <-<\no;

else
if(a..step->get-statusO== 2 11 a_step-

>get~statuso== 3)

II ~~save_step...old..values(a..step);

step~update (step..id, theDate. p...inputA, p..inputD, s..inputA. s-np
utD,

a...inputA~a...inputD,pri value~prec_..vlaue~dur-...vlaue, exp~jevvel)

cout << T s" <<"\no;
a~step->putObjectoC;

else
if (a.step->get~status ()== 4)
cout << tc" «<"\n*;

else
if Ca..step->get...status C)== 5)

cout << *a* «\n*;

OC-transactionComxnit U;
OC..closeo;

void step,..update(int step..id~char* theDats,
char* p...inputA, char* p...inputD,
char* s...irputA, char* s...inputD,
char* a-inputA, char* a...inputD,
int pri..value, int prec~vlaue,
int dur_ývlaue, int exp~jevel)

Update deadline(stepjid,theDate);

202

Add~primary..input (step~id, p~inputA);
Delete..primaryjinput(step_id, p~inputD);
Add~secondary...input (step..id, sjnputA);
Delete~secondary-input (step..>d. _inputD);

Add..affected_.modules (step...id,a..inputA);
Delete-affected-modules(step-id,a...nputD);
Update~priority(step...id,pri..vaiue);
Update..precedence (step..id, prec~vlaue);
Update~estimated...duration(step...id~dur~vlaue);
tUpdate..expertise~level (step...id, exp~jevel.);

void save...step...old-vaiues (STEP* a-..step)

STEP* temp~step= new STEP(Oternp..step",O);
temp~step->primary..input (a..step->primary..input W;

temp...step->secondary..inrnut (astep->secondary.Anput C);
temp~step->affected..jodule (a..step-

>affected..module (H;

ternp.step->preceded..by (a~step->preceded~by U);
temp..step->set-estirmated..duration(a-.step-

>get~estimated~durationoC);

temp~step->set~required~expertisejlevel (a...step-
>get...required..expertise...level U);

temp~step->putObject U;

void Undo...step~update (char* dbname,int step...id)

OC-open(dbname);
0C-transactionStart U;
STEP* a_step=find...step(step..id);

if (a...step) (
STEP- temp...step= (STEP')OCjookup(*ternp..step');
if Ctemp...step) {

a_step->primary...input (temp~step->prirnaryjinput U);
a..step->secondary...input (temp..step-

>secondary~input U);
a~step->affectedmjodule (temp...step-

>affectedModuleo);
a...step->set...priority (ternp..step-

>get...priorityU);
a...step->preceded...by (temp~step->preceded..by L);
a~step->set-estimated_duration (tenip..step-

203

>get_estimated_duration());
a_step->set-deadline(temp~step-

>get~deadline(4);
a_step-

>set~required~expertise-level (temp~step-
>get~required~expertise_level ();

temp~step->deleteObject U;
a_step->putobject U;

OC-transactionCommit U;
OC-closcU);

void create~step(char* dbnaxne, char* pr_Name, char*
comp~name)

OC~open(dbname);
OC-transact jonStart U;
int my~step...id=O;
int var, ver, varl~verl;
char protoName[641;
char* ystep~name=*step....;
char thENamef641;
char temp[64];
Set *aSet = (Set *)OC~jookup("step...set");
// If it does not exist, create it

if(aSet == NULL) (
//cout << "Creating set object .. \"

// Create a new set called step...set
aSet = new Set((Type*)OCjookup(*STEPO), Ostep...set");

IICreate step objects and insert it into the step...set
Sequencer*

aSequencer= (Sequencer*)OC....ookup (Step_.Sequencer");
if (aSequencerm= NULL)({

//cout << "Creating Sequencer object .. \"
aSequencer= new Sequencer("StepSequencer");

// aSequencer->putObject U;
my...step...id=1;

else(
II cout << aSequencer->Narre(<< * already exists.\n";

my~.step....d = aSequencer->getValue U;
II ~aSequencer->putObjectoU;

204

sprintf (temp. "%s%do, my...step..name,my..step...id);
STEP* a-..step=new STEP(temp~my~step...id);

sscanf(pr..yame, "%s %d:%do~theNanie, &var, &ver);
char *al~are = new char~strlen(theName)+l];
st rcpy (aName, theName);
if(var==O) vav1. = 1;
else vanl =var;
if(ver==O) yenl =1;
else verl~ven;
sprintf(protoName. "%s %d:%do,arjame, vanl, yenl)
thepath=0;
f ind..cornponent_..j~ch (protoName. aName);
if(!thepath)(

cout << "there is no: *<c<aName <<" prototype in DDB

return;

else(
COMP..ý.REFERFNCE* m~y...ref=new COMP_REFERENCEO;
rny~.ref->set..priv..name (aName);
iy~ref->set...yersion no(ven);
qy~ref->set_variation_no(var);
zryjref->putObject U;
a_step->set_basevesin1yre)

sscanf (comp...name, "%s %d:%d" ,theNarne, &van, &ven);
char* a-name=new char(strlen(theName)+l];

strcpy(a...name, theNarne);
char' check=O;
check = the~ame+strlen(theName) -10;
if (strcmp(check, .spec.psdl") ==0) {

MyString templ= MyString(theName) -10;
char' checkI=(char*)t ipl;
find...component..path (protoNanie, check 1);
if (!thepath)
cout «<"there is no: "«<theName «"* component

in DDB \no;
else(

COMP_-REFERENCE* mry-ref=new COMP-REFERENCEO~;
my ref->set~priv~name(a...name);
mynref->set version...no(ven);
mynref->set~variation~no (var);
my~ref->putObjectoC;

set_affected_modules (a...step, protoName,checkl);
a~step->add...primany~input (my...ref);
aSequencer->putObject U;

205

a..step->putobject U;
aSet->Insert(a_!3tep);
aSet->putObject U;

)else(
char* checki =0;

checki = theNarne~strlen (theName) -9;
if(strcmp(checkl, .inip.psd~l)==O) (
My...String templ= My..String(theName) -9;
char* checkl= (char*)teinpi;

find..component..path(protoName. checki);
if(!thepath)

cout <<"there is nio: "«<theName <<* component
in DDB \n";

else(
COMP...REFERENCE* my~ref=new COMPREF-ERENCE U;

myref->set~priv...name (a-.name);
ny~ref->set version...no~ver);

my~ref->set...variation...no(var);
my..ref->putObject U;
a~step->add...primary...input (rryref);
aSequencer->putObject U;

set_secondary...input (a~step, thepath);
strcat(checkl,".spec.psdlo);
my~ref=new COMPREFERENCEO;
myrref->set~priv_..name (checki);
my~ref->putObject U;
a~step->add...secondary~input (my~ref);
a~step->jiutObject U;
aSet->Insert (a-step);
aSet->putobject U;

)else
cout << *wrong components suffix \n";

OC-transactionCommit U;
OC-close U;

void set...aff ected..modules (STEP* a~step. char* protoName, char*
comp~name)

char* aNaxne= new chartstrlen(comp..name) +1];
sr-rcpy(aName, comp...name);

206

COMP_.REFERENCE* my~ref=new COMPREFERENCEO(
char texnp(641;
sscanf(protoNazne. %s", temp);
if (strcmp~temp,comp...name) !=O)

char *separator=-.-
char* wordt5J;
int imo;
word[O]=strtok(comp~name, separator);
while(word~i) !=NUJLL)(

i~i+l;
word(ij=strtok(NULL, separator);

irit n = strlen(word(i-1]).l;
MyString temp=My-String(aName)- n

char* parent= (char*) ternp;
ny~ref->set...priv...rame (parent);
niy~ref->putobject o;
a..step->add...affectedjnodules (my...ref);

strcat(aName,8.imp.psdlm);
my...ref=new COMP_REFERENCE O;

myref->set..priv...name (aName);
myr..ref->putObject 0;
a~step->add_affected_modules (my~ref);

a...step->putObject 0;

void set_secondary...input(STEP* a_step,char* compPath)

COMP...REFERENCE* my..ref;
char * check=(char*)O;

COMPONENT *mycomp =(COMPONENT *)OQ.,lookup (compPath);
if(my~comp != NULL){
List* my...list = my..comp->subComponents 0;

Listlterator my..iterator(my..list);
COMPONENT *theComponent;
while (my..iterator .moreData 0)

theComponent= (COMPONENT *) (Entity')my-.iterator 0;
List* the-l1ist = theComponent->TextObjectListfl;

Listlterator the...iterator(the-list);
TEXT...OBJECT 'the_text_object;

while (the...iterator .moreData 0)

the_text~object

207

(TEXT...OBJECT*) CEnt ity*) the-.iterator U;
check =the-text..object->getFileNanie()

strlen~the..text~object->getFileName())-lQ;
if(strcmp(check,w.spec.psdlf)==O){
my~ref=new COMPREFERENCEOC;
iy~ref->set~priv..name (the~text...object-

>getFileNameo);
nmy..ref->putObject U;

a..step->add...secondary...input (ry~ref);

else
cout <<cannot find the component \no;

void create_substep(char* dbname,int step..id, char* pjinput,
char* d-.name, char* thedate, mnt

duration)

OQ_,open (dbname);
OC-transactionStart U;
OC_Boolean FOtTND=FALSE;
Time T1(thedate);
int iy~step~id=O;
char tempL64];
char templ[64];
char* my...step~name=ostep_2;
Set *aSet = (Set *)OCjookup~ostep...set*);
Sequencer*

aSequencer=(Sequencer*)OC-..lookup(StepSequencerM);
my-step...id = aSequencer->getValue 0;
aSequencer->putObject 0;
sprintf (temp. %s%d", my..step...name,step..id);
STEP* the...step=(STEP*IOC...lookup (temnp);
if (the-.step == NULL)
cout <<,there is no such parent step \no;

else(
sprintf (tempi, "%s%d", mystep~name,my~step~id);
STEP* a-.step=new STEP(templ,my...step..Jd);
if(p...input[O]!= 101)
COMP_REFERENCE* my~ref=new COMP..REFERENCEC);
my~ref->set..priv~nane (pjinput);
my...ref->putobject 0;

208

a~step->add...primary...nput (my~ref);

a~step->set~base~version(the~step->get_base_version LW;
a...step->set,.deadline(the...step->get~deadlineo);
a~step->set~priority(the..step->get~priorityo);
a..step->set.~.estimated..duration(durat ion);
a~step->set..step-type (5);
List* zny..list= the~step->substep U;
Listlterator my_.Iterator(my..list);

STEP* zny..step;
// For each item in the iterator
while (myIterator .moreDatao()&& !FOUND)(

IIGet the item
my..step=(STEP*) (Entity *)my_Iterator()
if (my..step->get..status ()==3 &&

strcmp (my~step->get~designer(), d...name) ==O)(
a_step->add..predecessor(my...step);
FOUND = TRUE;

a~step->putObject U;

cout << a~step->get,.step-ido<« o\n';
mnt T2= a.~step->get,..deadline() - Ti;
if MT < 0)
cout <<10000 <<« \
else
cout <<T2 <<«~*
cout «<a_step->get...priority() << \nw;
cout «<a.step->get~estimated..durationo («P\nmh;

cout <*{";
a~step->show...preceding..steps U;
cout <<', \no;
cout «<Level (a...step-

>get..required..expertise~.level ()]< "\no
cout << a..step->get..in~degree(<< "\n*;

th,:istep->add_substep(a-..step);
char protoname[641;
My_.String temp4= My...String(p..input) -9;
char *compname = (char*) temp4;
COMP...REFERENCE* my...comp= the..step->get...base..y.ers ion U;
char *temp2=my..comp->get...priv~name U;
mnt var=my~comp->getvariation noU;
mnt ver=my~comp->get_.yersion~no U;
sprintf(protoname, "%s %d:%do, temp2,var, ver);

209

tind~component...path (protonamne, comnpname);
if (thepath)

set~secondary...input (a~step, thepath);
II else
IIcout <<*Cannot find component: <<« compname <<" in

DDB \no;

the...step->putobject U;
aSet->Insert (a~step);
aSet->put~bject U;

OC-transact ionCornmit U;
OC._close;

STEP* create_substep(STEP* the_step, char* pjinput)

1/OC~open(dbname);
OC-transactionStarto;

int my..step~id=O;
char templ(64];
char* my~step...naxe=ostep...";
Set *aSet = (Set *)OC lookup(Ostep set*);
Sequencer*

aSequencer= %Sequencer*) OC~lookup ("St ep_~Sequencer");
my...step..id =aSequencer->getValue();
aSequencer->putObject 0;

sprintf(templ,"%s%do, mstep~name,mny..step...id);
STEP* a-step=new STEP(temp1,my~step~id);
//cout «<"step name: 0 «<tempi «<\nN;
COMP...REFERENCE* my..ref=new COMP...REFERENCE U;
char* a-name=O;
a~name=new char(strlen(p...input)+l];
strepy (a~naze, pinput);
my~ref->set...priv..name (a..name);
my~ref->putObject 0;
a~step->set...base version(the~step->get_base_versiono);
a~..step->add...primary...input (my~ref);
a...step->set...parent step(the..step);
a~step->putObject U;
the~step->add..substep (a~step);
char protoname[641;
My...String temp4= MyString(p~input) -9;
char *cornpnazne = (char*) temp4;
COMP_REFERENCE* my..comp= the...step->get-basev.ers ion U;

210

char *temp2=niy..comp->get..priv..name();
int var=my~comp->get_..variation...noo;
int ver=nycomp->get_..version...noO;
sprintf(protoname, "%s %d:%d*, tenip2,var, ver);
char* check=a...name+strlen(a-jiame) -10;
if(strcinp(check..-spec.psdlw) != 0)

thepath =0;
f ind~component...path (protoname, compname);
if (thepath) (

IIcout «<"check: 0 «<check <<"\n";
set~secondary~input (a...step. thepath);
strcat(coinpname,".spec.psdl*);
COMP...REFERENCE* my....ef=new COMP_REFERENCE U;
my~ref->set...priv...name (compname);
my~ref->putObject U;
a~step->add~secondary...input (my..ref);

else
cout «<*Cannot find component: <<« cornpname <<% in

DDB \no;

a..step->putObject U;
the...step->putObject U;
aSet->Insert (a..step);
aSet->putObject U;
return a...step;

void auto..create...substeps(char* dbname,int step..id)

OC~open (dbname);
OC-transact ionStart U;
COMP,.REFERENCE* my~ref;
STEP* my..step;
STEP* a...stepl;
STEP* a_step2;
char temnp[641;
char* my~step~name="step_";
sprintf (temp1 %s%do, mry...step..name, step.~.id);
STEP* the_step=(STEP*)OC...lookup (temp);
if (the...step == NULL)

cout «<*there is no such parent step \no;
else{

List 'my list-the step->primary input U;
mny..ref = (COMP...REFERENCE')my...list->getEntityElement (0);

211

// char* my-njame=0;
int nl= strlen(my~ref->get...priv~name()) +1;
char* ny-name=new charinhi;
strcpy(my...name, my~ref->get..Jriv.~naxne);
zny_..name~nl]=,\0;
ny-step= create-substep(the...step,my..name);

1/ cout «<my...narne: 0 y..y.name <<"\n";
char* check=0;
check = myref->get~priv~nanie(+strlen(my~ref-

>get~priv...name())-10;
//cout«UOcheck: « < check <<"\n";

if(strcmp(check,".spec.psdlwhz==)(
my~step->set~step~type(l);
iy~step->set_status(l);

rny..step->set..deadline (the,.step->get~deadline());

the..step->set_status (1);
the..step->pjutObject U;
my~step->putobject U;
List* a-list = the~step->affected~jnoduleo;
COMP_REFERENCE* a...ref 1;
COMP_REFERENCE* a~ref2;

a-ref 1 =(COMP...REFERENCE')a-list-
>getEntityElement (0);

/1 ~char' a-..name2=0;
int n2=strlen(a-refl->get~priv...name())+1;
char* a-name2'= new char[n2J;
strcpy(a..name2, arefl->get..priv..name U);
a_....aine2[n2l1=\01;

IIcout <<ny~name: 0 «a~name2 <<"\no;
a~stepl = create~substep(the~..step,a..jame2);

if (a~list->Cardinality C)==1)
a...stepl->set-step...type(2);

else
a~stepl->set...step...type (3);

a~stepl->set...status(1)';
a...stepl->add...predecessor (my...step);

a~stepl->set..deadline (the...step->get...deadline U);

a...stepl->putobject U;
if(a..list->Cardinality()> 1) (

a-ref2 =(COMP_REFERENCE')ajlist-
>getEntityEleznent (1);

mnt n3=strlen(a..ref2->get~priv..name())±;
char' a-namel= new char[n3);

II cout <<*my..name: U «<a~jamel <<"\nfl;

212

strcpy(a~namel,a~ref2->get~priv~name U);
a-namel tn3 I=1\0P;

a..step2 = create...substep(the...step,a..narnel);
a~step2->set..step..type (2);

a~step2->set..status (1);
a~step2->add~predecessor (rny..step);

a-step2->set-deadline(the~step->get_deadline U);
a~step2->set...priority (the~step->get...priority U);

a..step2->putObject U;
my~step->putObject U;

else(
my..step->set...step...type (4);
my..step->secondary...input (the...step-

>secondary~input U);
my...step->set...status (1);
mystep->set...deadline(the..step->get~deadline U);

my~step->putObject U;
the..step->set_status (1);
the~step->putObject U;

OC-~transactionCoznmit U;
OC-closeo;

void commit-substep(char* dbnanie,int step..jd)

OC.~.open (dbname);
0C-transactionStart U;
STEP* the-.step=find~step(step.Jd);
if (the-step == NULL)

cout «<there is no such step \no;
else(

int my..status = the_step->,get..status U;
if(my-..status !=3)
cout << *cannot commit an un-assigned step \n";
else(

if (the..step->get~step.~.type()==O)
cout .<<the~.s tep- >Name() << ff is not a substepl! \no;

else(
char an...id164];
sprintf(an,...id, .%dN,the..step->get..step_...d U);
MyString

213

temp=My-.String () +My..String ("step_) +My..Striig (anjid);
dirNamePtr =(char*) temp;

>getbase COMPýREFERENCE* rny..ref= the~step-
>get.bae..vers ion o;

char* thenarne = my~ref->get...priv...narne ;
int var z my~ref->get,.variation_noo;
int ver = niy..ref->get version...noo;
char protoriame [64];
sprintf(protonanie, "%s %d:%do, thename,var,ver);

IIcout «<pr toname: « <protoname <<"\n';
List* nmy-list= the_step->primaryjinputi);
COMP..REFERENCE* a_ref 1;

a-ref 1 =(COMP-REPERENCE*)rny-ist-
>getEntityElemeit (0);

char *my-name= new char(strlen(a-ref 1-
>get~priv..naine ())+];

strcpy (ny~name, arefl->get~priv_.name U);
if (the~step->get~step~type()==1) {
MyString temp4= MyString (ny~name) -10;
char *compName = (char*) temp4;

//cout << coxnpName: 0 «compName <<"\no;

COMPONENT* new._comp;
new__cornp = Add_new_version(protoname,cornpName);
if (new...comp== NULL)

cout << the dam error again \n";
else(

the~step->add:output (new_comp);
the~step->set~status (4);
the~step->putObject U;

else(

MyString temp4= MyString(xmy..nanle)-9;
char *compName = (char*) temp4;
COMPONENT* new__comp;
newý_coxnp = Add-new_ýversion (protoname. cornpNarne);
if (new...cornp== NULL)

cout << "the dam error again \no;
else{

the~step->add~output (new-comp);
the~step->set~status (4);
the-step->putObject U;

214

else

My...String teznp4= 4yString (my~name) -9;
char 'conipName = (char*) temp4;
L~ist* a list= the~step->preceded-byo;
STEfl..step= (STEP*)a..list->getEntityElemelt (0];
List* the..jist=my~step->outputi);
COMPONENT* aCornp= (COMPONENT*)

the~list->getEntityElemelt (0);
if (the-.step->get..step...type()==2)(

MyString tempi (My_.St ring (dirNamePtr)
*MyString(-/-)i. My_.String(a...refl-

>get..priv~name ());
char 'temp2= (char*) tempi;
ifstream nmyFile(temp2); //=(char')O;
if (iyFile) (

TEXTOBJECT 'a..text~obj;
cout <<Creating text object:

<a~refl->get...priv...nameo <<) «...\

a~text~obj = new TEXTOBJECT U;
a..text..pbj ->append (a~refl1->get...priv_name U,

znyFile),
aComp->replaceTextObject (a-text~obj);
aComp->putObject U;

the..step->add...output (aComp);
the...step->set_status(4);
the..step->putObject U;

else cout <<*there is no such file: « <a-refl-
>get...priv....name() «<\n";

else(
if (the-..step->get~step..type ()==3)f
char* badra new char(strlen(aCornp-

>CompnentName())+l];
strcpy (badr, aCoxnp->CompnentName U);
char* salah=get-last-token(badr);
COMPONENT* newcomp;
newý_comp =

Add_new_version(protoname,compName);
if~new..comp != NULIL)

new...comp->replace subconponent (aComp, salah);
new...comp->putobject U;
the_step->add...output (new...comp);
the_step->set..status(4);

215

the...step->putObject o;

OC-tansctio~onnit(C-d~othng)
OC-closeo

voidcomit~tepcha* dbameintste~id

OC-transaction~trommt(Cdoohn)

void * ommistep~char dbnamep_ t eid

sprintf(temp, "%s%d*, my..step~name,step...id);
STEP* the...step=(STEP*)OC...lookup (temnp);
if (the-..step == NULL)

cotut <<"there is no such step \no;
else(

int my-status = the...step->get..status();
if(mry-.status !=3)
cout << cannot commit un-assigned step \nm;
else(

COMP...REFERENCE* rty..ref= the...step-
>get_base_versiono;

char* thename = ny-ref->get~priv..naiefl;
int var = my..ref->get...variation..no();
int ver = iy~ref->get...version...noo;
char protoname[64];
sprintf (protoname, "%s %d;%d-, thename,var,ver);

if (the_step->get~step-type() ==O)

List* my..list =the~step->substepo;
if(my-list->Cardinality()== 1)

STEP* my~step= (STEP*)my~list-
>getEntityElement (0);

List* ajlist = my...step->outputu;
COMPONENT* my~comp;
ny-comp = (COMPONENT*) alist-

216

>getEntityElement (0);
car

templ=generate...new~configuration(protonarne, ry~comp);
update_base_versions(step~id~templ);
the~step->set_status(4);
the~step->putobject C;

else

List* znyjist = the..step->substepo;
Listlterator my~iterator(my~list);
while (rnyjterator .moreData U)

STEP*
my...step=(STEP*) (Entity*)mry_iteratoro;

if(my~step->get...step..type()=3)

List* a_list = xny.,step->outputo;
COMPONENT* zny..comnp;
mnycomp =(CQMPONENT*)a list-

>getErxtityElement (0);
char*

ternpl=generate_new~configuration(protoname, my..comp);
the..step->set...status (4);
update~base versions(step.~.id,templ);

the~step->putobjec-. U;

else
cout <<" Sorry this is not a top level step \n";

OC-transactionCornmit (OC..doNothing);
OQ..closeo;

void update_base_versions(int stepjid,char* temnpl)

char propto..name[64];
int var, ver;
sscanf(ternpl,*%s %d:%dw, propto..namne, &var, &ver);
STEP* the~step = find_step(step~id);
if(the-..step != NULL)(

217

COMP-REFERENCE* a_ref= the.-tep->get~base-versiono;

Set *aSet = (Set *)OC~lookup(*step-set*)
// Ask the set object for an iterator
Iteiator* anlterator = aSet->getlterator()
STEP* my~..step;
// For each item in the iterator
while(anlterator->moreDatao)
// Get the item
my-step=(STEP*) (Entity *) (anlterator->operator()());
if(my~step->get...status) <=3)
COMP_REFERENCE' my_ref= my~step->get~base_versionU;
if(strcmp(a...ref->get,.priv_nameo,

my...ref->get...priv_name(')==O &&
a~ref->get..versioni_no()== my-ref->get~version_no()

a~ref->get...variation...no (== my~ref -
>get_ývariation~noU)(

my~ref->set.,version_noC ver);
my~ref->set....variation_no(var);
rny..ref->putObject U;
my..step->putObject U;

mainstepcxx ** ********** 9 *******

#include <Database.h>
#include <Directory.h>
#include <string.h>
#include <Set.h>
#include "stepOperations .ho

extern "C*

char *getenv(const char ;

/ /Globals
char* dirNamePtr=" w

int warning-time=1;
char *dbName= OsupportDB*;
char' DESIGN_DATABASE_DIRECTORY="DesignDB";

218

char* thepath =(char*)O;
char* v..path =(char*)O;
COMPONE.NT* cornpPtr=NrJLL;

int main(int argc,char *argvl])

char *option= (char) 0;
char *aNamne=(Cchar*) 0;
char *aNamel= (char) 0;
char *dbName= (char*) 0;

char theothername (64];
char tmpl(64];
char tmp2[64];
char *tmp3=(char*)0;
char tmp4[64];
char *tmp5=(char*)0;
char tmp6[64];
char *tmp7=(char*)0;
int rny..step...id;
int a~stepjid, a..value, a~valuel, avalue2;

7 char *user_ýname = getenv(OUSERO);

if (argv(1J)

dbwame =new charfstrlen(argvE2.l)+l];
strcpy(dbName~argv[1I);

if (argv'(2])

option = new char(strlen(argv[2])+l];
strcpy(option, argv(21D;

/1Create step
if(option[Oj ==1'1){

IIget proto name
aName.l = new char(strlen (argv [31) +11

strcpy(aNamel,argv[3ll);
aNarine = new char(strlen(argv[41)+l];
strcpy(aName,arqv(4]);
sprintf(tmpl,"%s %s*,aNamel,aNamfe);
aName3. = new charfstrlen(argv[5])+l];
strcpy(awamel,argv(SII);
aName = new char[strlen(argv[6])+l];

219

strcpy(aName,argv[6D);
sprintf(tmp2,"%s %so,aNarnel,aName);
create..step(dbName, tzpl. tnp2);

else if(option[O] == 2(
I/Show Step

aName = new char(strlen(argv[3])+l);
strcpy(aNarne,argvl3 I);
sscanf(aName, "%d",&my~step~id);
show..step (dbName. ystep-id);

else if(option[O] ==#3(
IIshow steps of certain status

aName = new char~strlen(argv[31l+1J;
strcpy(aName,argv(3]);
show-.steps (dbName, aNarne);

else if(option(O] 1=41)(

IIupdate step
aName = new char(strlen(argv[3])+lI;

strcpy(aName,argvj3fl;
sscanf(aName,"%dw,&my...step_id);

IIupdate deadline
aNamel = new char [strlen (argv [4]) +1]

strcpy(aNamel,argvf41);
aName = new char~strlen(argv[5])+lI;
strcpy(aName,argv [5]);
sprintf(tmpl,"%s %so,aNamel,aName);

//add primary input
aNamel = new char (strlen (argv(6l).4-11;

strcpy(aNamel~argv[61);
aName =new char(strlen(argv(7]l+l];
strcpy(aNaxne,argv [7]);
sprintf(tmp2, "%s %s*,aNamel,aName);

I/delete primary input
tmp3 = new charfstrlen(argv[8])+l];

strcpy(tmp3,argv[8]);

//add secondary input
aNamel = new char (strlen (argv [9 +1

strcpy~aNamel~argv[91);
aName = new charfstrlen(argv(lO])+l];

220

strcpy(aName,argv(lO]);
sprintf(trnp4, "%s 1*s"aNarnel,aName);

//delete secondary input
trnP5 = new charlstrlen(argvflll)+Ij;

strcpy(tmpS,argvtll]);

//add affected...modules
aNamel =new

charfstrlen(argv[12])+l];
strcpy(aNaniel,argv[12 1);
aNaxne = new charfstrlen(argv[131)+1];
strcpy(a~ame,argv[13]);
sprintf(tmp6,0%s %s*,aNamel,aName);

//delete affectedjnodules
tmP7 = new char[strlen(argv[l4fl+l];

strcpy(trnp7,argv[14]);

IIUpdate..priority
aNamel = new

charfstrlen(argv[15]) +1;
strcpy(a~amel,argv[15]);
sscanf (aNamel,*~%dm,&a_.value);

//Upda t e.precedence
aNanmel = new

char~str.Ien(argv(l16])+l1;
strcpy(aNamel,argv(l6fl;
sscanf(aNamel,"%d*,&a...step..id);

//Update~estimated_duration
aNamel = new

char~strlen(argv(17J)+lJ;
strcpy(aNaxnel,argvf 17]);
sscanf(aNamel,"%d",&a_..valuel);

//Update~expertise_level
aNamel = new

chartstrlen (argvfl8) +1)';
strcpy(aNamel,argv[18]);
sscanf(aNamel,*%d*,&a~value2);
Update...Step(dbName~my~stepjid, tmpl,

tmp2, trp3. tzp4, tnp5, trp6, tmp7,

a~value, astep...id, a.valuel. a..value2);

221

else if(option(O] 851
IIUpdate~start..time

aName = new char(strlen(argvf3l)+l];
strcpy(aName,,argv(3]);
sscanf (aName,*%dN, &ry..step...id);
aNamel = new char[strlen(argv[4l)'-lJ;
strcpy(aNamel,argvE4]);
aName = new charfstrlen(argv(51)+l];
strcpy(aName,argv[5]);
sprintf (theothername, S%s

%sm,afamel,aName);
Update-start-time (dbName~iy~stepjid,

theothername);

else if(option[O] ==61)
IIUpdate-finish-time

aName, = new char[strlen(argv[3])+1];
strcpy(aName,argv(3]);
sscanf(aName,m%do,&my...step..id);
aNamel =new charlstrlen(argv[4fl+l];
strcpy(aNamel,argv(41);
aName = new charfstrlen(argv[51)+lI;
strcpy(awame,argv(5]);
sprintf (theothername, M%s

%s",aNamel,aName);
Update.~.finish...time CdbName, my..stepjid,

theothernaine);

else if(option[O] ==17)
IIUpdate Status

aName = new char[strlen(argv[3])4-l];
strcpy(aNaxne,argv[3 1);
sscanf(aName,*%dn,&my...step..id);
aNaxnel = new char(strlen(argvf4l)+l];
strcpy(aNamel,argv(4 1);
sscanf(aNamel,*%d*,&a_vyalue);

Update~status (dbName,rny.step..id,a...value);

else if(option(Oj == 8)
1/Update designer

aName =new chartstrlen(argvt3])+lI;
strcpy(aName,argv(3]);

222

sscanf (aName,O%d , &niy.step..id);
aNamel = new char(strlen(argv(4])+1];
strcpy(aNamel,argv[4]);

Update~designer (dbName, my~step~id. aNamel);

else if(option[OJ == 11
/1print commit data

aNaxne = new chartstrlen(argv(3])+1];
strcpy(aName~argv [3]);
sscanf (aName,O%d , &my~step~..id);
get~commit..data (dbName,my...step-id);

else if(option[O] == a)
IIget scheduling data

aName = new char(strlen(argv(31)'-l];
strcpy(aName,argv(3]);
sscanf (aName, %dM , &mystep...id);
aNamel = new char(strlen(argv[4])+l];
strcpy(aNamel~argv[4]);
aName anew char(strlen(argv[5])+1];
strcpy(aName~argv [5]);
sprintf (theothername, R%s

%so,aNamel,aName);
get..scheduling-data (dbName,my...step...id,

theothername);

else if(option[O] == b)
// create substep
aName = new char[strlen(argv[3fl+lJ;
strcpy(aName,argv(3 1);
sscanf(aName,"%d",&xny-.step-id);
aNarnel = new charfstrlen(argv(4fl+l];
strcpy(aNamel,argv[4J);
tmp3 n new char(strlen(argv(5])*l1;
strcpy(tmp3,argv[5]);
tnmp5 = new charfstrlen(argv[6l)+l];
strcpy(tmp5,argv[61);
sprintf (theothername, W%s %s" ,trnp3, tmp5);
aName = new charlstrlen(argv(7])-.l];
strcpy(aName,argv(7]);
sscanf(aName, M%d*,&av.alue);
create...substep(dbName,my~step...id, aNamel,

user~name, theothername,
a_.yalue);

223

else if(option(O] == 'c')
IIapprove step

aName = new char(strlen(argv[3])+1];
strcpy(aName,argvf31l;
sscanf(aName,"i%du,&my..step...id);
auto..create...substeps (dbName,rrj...step~id);

else if(option(O) =='d)
/1commit substep

aName = new char~strlen(argv[3])+l];
strcpy(aName,argv(3]);
sscanf(aName,"%d",&my...step..id);
commit..substep (dbName,my..step...id);

else if(option(O] ==ge)
1/ commit step

aName = new char~strlen(argv[3])+1];
strcpy(aflame,argv(3]);
sscanf(aName,u%d",&nmy..step...id);
comrmit..step (dbName,my...step...id);

else if(option[OJ == If,){
IIremove...step...from..schedule

aName = new char[strlen(argv(31)+lI;
strcpy(aName,argv[3]);
aNamel = new char[strlen(argv(4])+1];
strcpy(aNamel,argv [4]);
tmp3 = new char(strlen(argv(51)+1J;
strcpy(tmp3,argv[51);
sprintf (theothername, M%s

%s",aNamel,tmp3);
remove..step~from...schedule (dbName, aName,

theothername);

else if(option[O] @go)
//Dump step components

aName = new char~strlen(argv(3])1 [-;
strcpy(aName,argv[3]);
sscanf(aName,"%d*,&my...step...id);
dump..step~components (dbNamemy~step~id);

else if(option(OI == 'h')
IIfind assigneC2 step

find_assigned..step (dbName,

224

user~nazne);
else if(option(O] == i)

/1Suspend/Abandon Step
aName = new char~strlen(argv(31D+lI;

strcpy(aNarne,argv(3]);
sscanf(aNarne, %d4,&my..step...id);
aNamnel = new charlstrlen(argv[4])+l];
strcpy~awamel,argvf41);
sscanf(aNamel,8%d",&a...value);
suspend...abandon~step dbName,ny~step...id,

a-value);

else if(option[O] =

iiSuspend/Abandon Step
aNanie = new char~strlentargv[31)+l];

strcpy(aNarne,argv[3l);
sscanf(aName, Q%dm,&wstep-.id);
Update...deadline (dbNanie, rny..step...id);

else if(option[O] =='k)
//Suspend/Abandon Step

aName =new charfstrlen(argv[31)+l1;
strcpy(aName,argv(3 I);
aNarnel = new charfstrlen(argv[41)i-lJ;
strcpy(aflarel,argv[4]);
sprintf (theothername, Us %sM ,aName,

aNamel);
Early..warning(dbName, theothernaine);

else if(option[O] == $1
1/get scheduling data

aNaine = new charfstrlen(argvj3])+l];
strcpy(awame,argv't3]);
aNaniel a new char(strlen(argv(41)+1];
strcpy(aNamel,argv[4]);
sprintf (theothername. '%s

%sm,aName,aNamel);
aName = new chartstrlen(argv[5])+1];
strcpy(aName,argv[51);

get~scheduling..data_2 (dbName,tehrnm,

aName);

else if(option[Ol == II
aNarne = new char~strlen(argv[31)+1];

225

strcpy(aNarne,argv(3J);
aNamel= new char~strlen(argv[4])*l];
strcpy(aNamel,argv[4 1);
sprintf (theothername, "%s

%s*,a~ame,aNalnel);
aName = new char(strlen(argvl5])+lI;
strcpy(aName.,argv(5]);
get...Sched_data1 (dbName, "MySchedule'

theothername, aName);

else
cout <<*Wrong Option: << option <<

Try again \n';

2. Class Component

component~h ***************************S*

ifnde f __COMPONENT...H

#define __COMPONENT...H

#include <Object .h>
#include <Dictionary .h>
#include <Type.h>
#include <List.h>
#include <Reference .h>
//#include "ReferenceMacros .ho
#include <stream.h>

#ifndef __TEXT_OBJECTH
#include "text...object .h"
#endif

extern TMC"

#icue{y/ieh
#include <sys/times.h>

#include <string.h>

IIClass /
//Defines a COMPONENT class. The class COMPONENT is a

derived

226

ii class of Object.
class COMPONENT
public Object
(
private

int version-id;
int variation.id;
char* theName;
char* privauthor;
time-t DateCreated;
char* previousversion;
char* next_version;
Reference partoflist;
// parent relationship
Reference subcomponentlist;
// child relationship
Reference usedby_list;
Reference textobject_list;

public:

1/ COMPONENT -- APL ONTOS required constructor
COMPONENT(APL *theAPL);

// Constructs a COMPONENT object
COMPONENT(char* name,int ver, int var);

// ONTOS method for savig Object as pesistent
Object.

virtual void putObject(OCBoolean
deallocate=FALSE);

II ONTOS method for deleting an Object
virtual void deleteObject(OC_Boolean

deallocate=FALSE);

1/ ONTOS heap mangagement method.
virtual void Destroy(Boolean abort = FALSE);

1/ Return the ONTOS Type of class COMPONENT.
virtual Type *getDirectType();

II Set the version mumber
void versionNumber(int ver)(

version-id = ver;

2

227

IIget the version muznber

int versionNuxnbero(
return version...id;

//Set the variation znumber
void variationNwnber(int var){

variation id = var;

//get the variation inumber
mnt variationNumbero(

return variation-id;

/1Set the author name
void AuthorName(char* auth)(

priv._author = auth;

//get the author name
char* AuthorName ()

return priv~.author;

/1Set the component name
void CompnentName (char* a..name) (

theNarne = a_name;

IIget the component name
char* CompnentNameO()

return theName;

/1set creation time
time-t setCreationDateo;

IIget creation time
time..t getCreationDateo(

return DateCreated;

1/set previous._version
void setPrevious...version(char* comppath)

228

previous-version = comppath;

/1get previous-.version
char* getPreviousversiono(

return previousvyersion;

//set next..yersion
void setNext._version(char* cornppath)

next..version = comppath;

char* getNext...versiono(
return next...ers ion;

//add a subcomponent
void addSubcomponent(COMPONENT* otherComponent);

IIadd a parent to the parent list
void addParentComponent (COMPONENT*

otherComponent);
void replace subconponent (COMPOIVENT* my~comp, char

*comp-nae);
IIfind component

void find..component (char *thename);

IIsearch the tree for a component

void fi4nd_a~component(char *thename);

//search the tree for a parent of a component
void find-Parent(char *thenazne);

/1get a list of subcomponents
List* subComponentso(

return (List*)
suib_component~list.Binding(this);

//reset a list of subcomponents
void subComponents(List* parts)(

sub...componentjlist.Reset(parts, this);

229

l I II
)!

// get a list of text objects
List* TextObjectList(){

return (List*)
text objectlist.Binding(this);

I

// reset a list of text objects
void TextObjectList(List* parts) (

text object_list.Reset(parts, this);
}

// delete the text objects of a COMPONENT object.
void deleteComponentText();

1/ Display the file names of the files contained in
// the COMPONENT node

void getComponentNames{);

II Display the file names of the file contained in
// each COMPONENT of the subtree

void getComponentSubtreeNames };

//Output the contents of an COMPONENT node to files.
Boolean getComponentSource(char*);
void getComponentSubtreeSource(char*);

// Inserts a textobject into the COMPONENT node.
void addTextObject(TEXTOBJECT *);

void replaceTextObject(TEXT_OBJECT

"*my_text_object);
// Output the .ps, .spec, .and .a f4 les contained i
// in the COMPONENT node.
Boolean getPSfile(char*);

Boolean getGRAPHfile(char*);

Boolean getSPECfile(char*);

Boolean getIMPfile(char*);

Boolean getSOURCEfile(char*);

char *getTEXTPtr(char*);

230

I
1/ Destructor for the COMPONENT class.

-COMPONENT ()
Destroy(FALSE);

1;;

class Sequencer : public Object
{
private

int theValue;
public:

Sequencer(APL *theAPL);
Sequencer(char* aname);
Type *getDirectType();

//increment the sequencer and return the new value.
int getValue);

1/ read the value of the sequencer (how many
// variation a component has)

int readValue){
return theValue;

}
1;

#endif 1/ __COMPONENT_H

componenLcxx

#ifndef _DDBDEFINESH
#include oddbdefines.h"
#endif

#include <Type.h>
#include <Object.h>
#include <GlobalEntities.h>
#include <Database.h>
#include <Directory.h>

extern "C"
{

char *getenv(const char *);

#include <strings.h>
}

#ifndef __COMPONENT_H
#include ocomponent.ho

231

#endif

//extern userPtr;
extern char *thepath;
extern char *dirNaznePtr;
extern COMPONENT* compPtr;

// ONTOS required constructor I
Sequencer: :Sequencer(APL wtheAPL) :Object (theAPL)

/1 Creates a Sequencer
Sequencer: :Sequencer(char* namre) :Object (name)

initDirectType((Type*)OC..lookup(*Sequencer"));
//directType(getDirectTypeo);
theValue=l;

Type* Sequencer: :getDirectTypeo(

return (Type*)OC_lookup("Sequencer*);

int Sequencer: :getValue()

t-heValue = theValue +1;
return theValue;

Cr)MPONENT: :COMPONENT(APL 'theAPL):
u 'theAPL)

II Creates a list to hold text objects, then reset a
reference

// to point to the list.

COMPONENT: :COMPONENT(char* name,int var, int ver):
Obj ect (name)

initDirectType((Type*)OC_lookup("COMPONENT"));
versionjid = ver;
variation-id = var;

232

theNdme =Nameof;
priv..author = 0;
char *userPtr =getenv(*tJSERO);
if (userPtr)(

priv...author = new char
(strlen(user~tr)+l];

if (priv...author)
strcpy(priv..author, userPtr);

DateCreated = setCreationDate();
previous-version=0;
next...version=0;
part~of...list .Init (new

List((Type*)OC~lookup(WCOMPONENT")),this);
sub~component~list.Init (new

List ((Type*)OCjlookup (COMPONENTO)) ,this);
used.byjlist.Init (new

List((Type*)OC...lookup(OCOMPONENTO)) ,this);
text~object~list.Init (new

List((Type*)OC....ookup(OTEXT...OBJECTO)) ,this);

/1Member Functions 1
1/returns the ONTOS Type for the COMPONENT class.

Type *COMPONENT: :getDirectType()

return (Type*)OC...lookup(OCOMPONENTO);

void COMPONENT: :putObject (OC...Boolean deallocate)

//saves structure of the component lists
((List*)part...of..lst.Binding(this))

->putObject (FALSE);
((List*)sub...component~list .Binding(this))

->putObject (FALSE);
((List*)used_by~list.Binding(this)) -

>putObject (FALSE);

233

>putObject (FALSE);
// saves the component itself
Object: :putObject (deallocate);

void COMPONENT: :deleteObject(OC...Booleafl deallocate)

//delete-- structure of the component lists

((List*)part-of...list .Binding(this))
->delete~bject (deallocate);

->delete~bject (deallocate);
((List*)used...by...list.Bifldiflg(this))

->deleteobject (deallocate);
((List*) text~objectjlist.Binding(this))

->delete~bject (deallocate);
/1deletes the component itself

Object: :deleteObject (deallocate);

void COMPONENT: :Destroy(OQ..Boolean aborted)

Entity* ent;
ent = part..of...list.Binding(this);
delete ent;
ent = subýcomponent~list.Binding(this);
delete ent;
ent = used...byjlist.Binding(this);
delete ent;
ent = text...object_list .Binding(this);
delete ent;
if (aborted) Object:

Destroy (aborted);

IIset creation time
time-t COMPONENT: :setCreationDate()

time-t *mlYtloc =0;
time_t theTime;
return theTime = time~n-rloc);

// delete the text objects of a COMPONENT object.

234

void COMPONENT: :deleteComponentTexto(

List *my-.list = TextObjectListfl;
Listlterator my~iterator(nray..ist);
TEXTOBECT *the..text..pbject;

while(my_iterator-moreDataU)

the_text..object
(TEXT-OBJECT*) (Entity*)Imy...iterator();
the...text~object -> deleteobject o;

1/check if the conponent name matches certain string
void COMPONENT: :find-cornponent (char *thename)

char* nameptr=O;
nameptr = CompnentName C) strlen (CompnentName()) -

strlen(thenaxne);
if (strcmp(nameptr,thename)==O)

thepath=CompnentNante ;

void COMPONENT::find~a..component (char *thenaxie)

find_component (thename);
if(thepath== 0)

List *my-list=
(List*) sub...component~list .Binding (this);

COMPONENT *tbeComponent;
while (my...iterator .moreData U)

theComponent=
(COMPONENT*) (Entity*)myjiteratoro;
theComponent -

>find_a_component(thename);

void COMPONENT::f~~~inpaetcr hnm)
II

List xTmy..list=
(List*)sub..component~list .Binding(this);

235

List Iterator myiterator(iy-list);
COMPONENT *theConmponent;
while(my-iterator.moreDatao)

theComponent
(COMPONENT*) (Entity')my..iteratoro;
if (strcnp (theConiponent
->CompnentName(), thename) ==O)

compPtr= this;
return;

else

>find...parent (thename);
homnet

//Displays the name of each text object in a COMPONENT object.
void COMPONENT: :getCoinponentNameso(

cout << Name() <<*\nm ;
List 'my_list =

(List') text-object~list .Binding (this);
Listlterator my...iterator(myjlist);
TEXT_..OBJECT 'the_text_object;

while (my~iterator.znoreData U)

the_text,..object
(TEXT_OBJECT') (Entity*)my..iteratoro;

the_text..pbject -> displayFileNamefl;

void COMPONENT: :getComponentSubtreeN'amesoC

getComponentNames 0;
List 'my-~.list =

(List*) sub...component~jist .Binding(this);
Listlterator my...iterator(my..list);
COMPONENT 'theComponent;
while (ry~iterator.moreData 0)

theComponent
(COMPONENT') (Entity*)my~iteratoro(;

236

theCoinponent -
>getComponentSubtreeNameso~;

Boolean COMPONENT: :getComponeritSource(char *fileMode)

List 'ny~list
(List*) text...object_list.Binding(this);

Listlterator my...iterator(my...list);
TEXTOBJECT *the_text_object;
Booleani write-failed = FALSE;
while (my~iterator .roreData 0)

the_text..pbject=
(TEXT...OBJECT*) (Entity*)my..iteratoro;
if (!the-.text-.object ->

rebuildTextFile (fileMode))
write-failed = TRUE;

if (write-.failed)
return FAILED;

else
return SUCCESS;

void (riMPONENT: :getComponentSubtreeSource (char * fileMode)

getComponentSource (fileMode);
List *my-list =

Listlterator my...iterator(my...list);
COMPONENT *theCornponent;
while (rny..iterator .moreData 0)

theComponent
(COMPONENT*) (Entity*)my...iteratoro;
theCoinponent
->getCornponentSubtreeSource (fileMode);

void COMPONENT: :addTextObj ect (TEXTOBJECT *rny text obi ect)

237

List *rnY..list = TextObjectList.U;
my...list ->Insert(my~text..object);

rny,.list ->putObjecto;

void COMPONENT: :replaceTextObj ect (TEXT_.OBJECT
'my..text~obj ect)

OC-Bool ean FOUND=FALSE;
char *a...narne=new char (strien (my...text~object

strcpy(a~name, my.text~object->getFileName0i);
// cout «<new: « < aname «wO\nu;
List *my...list = TextObjectListfl;
Listlterator my_iterator(my~list);
TEXTOBJECT* a_text_object;
while (my~iterator .moreDatao()&& ! FOUND)

a~text...object=
(TEXT_..OBJECT*) (Entity*)my~iteratoro;
char *a_namel=new

char (strien (a_text~object
->getFileNazne())+1];

strcpy (a...namel, a..text...object
->getFileNameo);

/1 cout «<old: « a< a-namel «<"\n";
if(strcmnp(a...naxe, a~namel)==O) (

myjlist->Remove (myjlist

>Index(a..text~object));
my...list-

>Insert (my...text~object);
FOUND = TRUE;

my~list -> putObjecto);
putObject 0;

Boolean COMPONENT: :getPSfile(char *fileMode)

List *my_list
(List*)text...objectjlist.Binding(this);

Listlterator my_iterator(my-jast);

while (my_iterator .moreData U)

238

TEXT_.OBJECT *the...text...object
(TEXT...OBJECT*) (Entity*)ny~iteratoro;
char *the...fjle..name =the~text~object

->getFile~amefl;
the..file namez(the...file...rame +

(strieri(the..text~obj ect -
>get FileName 0)

-3));
if(strcmp~the...file..narne, .psM)==O)

if (the...text...object
->rebuildTextFile(fileMode));
return SUCCESS;

Boolean COMPONENT: :getSPECfile(char *fileMode)

List *'my-list
(List*)text-object-list.Binding(this);

Listlterator xny...iterator(my-list);
while (ITV..iterator .moreData 0)

TEXTOBJECT *the..text...object-
(TEXT...OBJECT*)(Entity*)my...iteratoro;
char *the...file..narne = the_text..object

->getFileNameo;
the_file...nare=(the...file...name +
(strlen(the_text~object->getFileName())-

10));

if(strcmp(the-file....name,*.spec.psd1M)==0)

if (the..text..obj ect
->rebuildTextFile CfileMode))

return SUCCESS;
else

return FAILED;

239

Boolean COMPONENT: :getGRAPHfile(char *fileMode)

List *my_list
(List*) text-.object..list .Binding(this);

Listlterator my...iterator(my...list);
while(xny-iterator-moreDatafl)

TEXT....OBJECT *the_text..object
(TEXTOBJECT*)(Entity*)my..iteratoro;
char *the_file_name = the_text~object

->getFileNameo;
the..jile-name=(the...file_ýname +
(strlen(the~text...object->getFileName()) -

6));
if(strcmp(the_file_name,".graph')==O)

if (the...text..obj ect

>rebuildTextFile(fileMode))
return SUCCESS;

else
return FAILED;

Boolean COMPONENT: :getlMPfile(char *fileMode)

List *my-list
(List*) text~object~list.Binding (this);

Listlterator my_iterator(my~list);
while (my~iterator .moreDatao)

TEXTOBJECT *the_text~object
(TEXT...OBJECT*) (Entity*)my...iteratoro;
char *the-file-name = the-text...object

->getFileName U;
the-file-name=(the..file-name +
(strlen(the-text...object->getFileName())-

9));
if(strcmp(the_file_name,u.imp.psdl")==Q)

240

if (the...text-o.bject
->rebuildTextFile(fileMode))

return SUCCESS;
else

return FAILED;

Booleani COMPONENT: :getSOURCEfile(char *fileMode)

List *my..list
(List*)text....bject...list .Binding(this);

Listlterator myiterator(rny..list);
while(myjiterator.mtoreDataU))

TEXTOBJECT *the~..text..object
(TEXT-.OBJECT*) (Entity*)zny..iteratoro;
char *the~fie...name = the..text...bject

->getFileNazne ;
the_file~name=(the...file..name +
(strlen(the-text_ýobject->getFileNamfe() I-

2));
if(strcmp(the_file~name, .a")==O)

if (the..text_....object
->rebuildTextFile(file~ode))

return SUCCESS;
else

return FAILED;

char *COMPONET: :getTEXTPtr(char *TextType)

List *my-list
(List*)text...object_list.Binding(this);

Listlterator my~iterator(rny..list);
while(iny..iterator.moreData 0)

TEXT_OBJECT *the_text~object
(TEXTOBJECT*) (Entity*)my...iteratoro;
char *the-file-name = the_text...object

241

->getFileNamefl;
char *the-file=Cthe-file-name +

(strien (the.,text..object-
>getFileNameM)

(strlen(TextType)));
if (strcmp(the...file. TextType) ==Q)

return the-text~object -
>text ()

return (char *)O;

Ifadd a subcomponent
void COMPONENT: :addSubcornponent(COMPONENT* otherComponent)

List *child-nodes = (List *

sub_component_list.Binding(this);

if (!this)

cout << *<ERROR: cannot add a
subcomponent to a null component\no;

return;

if (!child_nodes)

cout << <ERROR: cannot add a null
subcomrponent to a component\n";

return;

child~nodes->Insert (otherComponent);
child~nodes->putObjecto;
putObject();

void COMPONENT: :replace~subconponent (COMPONENT* ny~comp,
char* comp~name)

OC_Boolean FOUND=FALSE;
char* salah=new char[strlen(comp~name) +1];
strcpy (salah. cornp..name);

II cout «"*cornp: " << salah <<"\n";

242

List 'my-.list = (List '

sub..component..list .Binding(this);
Listlterator niy..itcrator(znv..list);
while(rny_iterator.moreData() &&FOUND)(

COMPONENT* a...comp=
(COMPONENT*) (Entity*)my...iteratoro;
char* test=a-.comp
->CornpnentNarne (+strlen (a~comp
->CompnentName())-strlen(salah);

IIcout «<mold: I «<test <<\n";
if(strcmp(test. salah)==O)(

znyjist->Remove (my~list
->Index(a~comp));

my..list->Insert (ry~comp);
FOUND = TRUE;

void COMPONEN*T: :addParentCoznponent (COMPONENT*
otherComponent)

List *parent_nodes = (List
*)part_of_list.Binding(this);

if (!this)

cout << "<ERROR: cannot add a
subcomponent to a null component\n";

return;

if (!parent~nodes)

cout << *<ERROR: cannot add a null
subcomponent to a component\nw;

return;

parent._.nodes->Insert (otherComponent);
parentnodes->putObject o;
putObjecto;

compOperations.b **h******.*.*.**.*..******

#i fndef __COMPOPERATIONSH
#define __COMP_OPERATIONS_H

243

#includeocomponent~h

char* get..last...token(char* comp~name);
char* get...red_of_extras~char* comp-.name, char* a~narne);
OC_Boolean setN.ew~prototype...Directory(char* aName);
0CBoolean set_new_cornponent~dir(char' aName);
OCBoolean set_new__version...dir(char' aName, int var, int
ver);
void Add_.SubComponent (char' dbName, char* namel, char*
a..name2,char* a...naze3);
void CreateComponent(char* aName,int var, int ver);
voi.d ShowComporient..subtree (char* dbNazne, char' naznel, char*
aName);
void ShowComponent..subtree(char' namel, char' aName);
void ShowComponent(char* dbName,char' namel, char' aNanie);
void DeleteComponent(char' dbName,char' namei~char' aNarne);
void DumpComponent (char' narnel, char' aName);
void CreatePrototype(char' dbNazne, char' aNanie);
void find_component..path(char' comp~name, char* a-name);
void Find_Parent(char' protoname,char'comp~name);
COMPONENT* Add_new._version (char' protoname,char'comp~..naze);
void DuznpComponent...subtree (char' dbnaxne, char'
protoname, char' conip..name);
void Show~prototypesichar' dbName);
void find_vyersion. .path(char' protoname,cher'comp-name);
void Duxnpversion(char' dbnarne, char* prot..:name,char*
comp-name);
char' generate new_conf igurat ion (char* prctoname, COMPONENT'
my-.coinp);
void DumnplImpFile (char' dbname, char' protoname, chart
comp...name);
void Duxnp_..Spec...File(char* dbnazne, char' protoname~char'
comp-name);
void Duznp_.Iznp..ilel(char' protoname~char* comp..~name);
void Dump...Spec...Filel (char' protoname, char' comp_..name);
void Show_component_ýversions(char* dbname,char*
protoname, char'comp~name);
#endi f / /COMP_..OPERATIONSH

compprtonscx****tio *******s********x******~********

#include <Database.h>
include <Directory .h>
#include <string.h>
#include <stream.h>

244

#include "text..object .h-
#include S component .ho
#include *my-String.ho
#include ecomp~operations .ho
include ostep~operat ions .ho
// Globals
extern char *dirNamePtr;
extern char* DESIGNDATABASE.DIRECTORY;
extern char* thepath
extern char* v..path
extern COMPONENT* compPtr;

static char *my~ext[5]=(O.spec.psdlu, ".irnp.psdlo, N.ps",
".graph6,.a;

char* get~last~token (char* conp~name)

char *separator=*>-;
char* wordi;
char* word2;
word1=strtok(comp..nane, separator);
while(wordl !=NULL) (

word2=wordl;
wordl=strtok(NTJLL, separator);

return word2;

char* get...red~of..extras(char* comp~name. char* a~..name)

char *salah=new char(strlen(comp~..name) fl];
strcpy (salah, comp~name);
char *badr= new charfstrlen(a-.name) +11;
strcpy (badr, aname);
mnt n =strlen(salah) -2*strlen(badr) -4;
char* word2=new charfni.11;
strncpy (word2. salah, n);

word2[n+1]=,\O;
return word2;

void CreatePrototype(char' dbnarne, char* aName)

OC-open (dbname);
OC-transact ionStart U;

245

if (setNew~prototypeDirectory(aName))
CreateComponent (aName, 1.1):

0C..transactionCornnit (QCdoNothing);
OC...closefl;

void CreateCornponent(char* aNarne,int var~int ver)

cout << OCreating a COMPONENT: " << aName <<

COMPONENT trny..component = new
COMPONENT (aNanme, var, ver);

int i;
for~i=O; i<=4;++i){

My_.String tempt (My-.String (dirNarnePtr)+
MY...String (") +My...St ring (aName) +

My_..String(my..ext[i)));
char *ternp2= (char*) tempt;
My...String tempJ (MyString(aNanme)+

My...String(ny~ext[iJ));
char *temp4= (char*) teznp3;
ifstream myFileftemp2); //=(char*)O;

if (mryFile)(
TEXT_OBJECT *a...text_obj;

a..text..obj= new TEXTý_OBJECTU;
a...text...obj ->append (temp4, myFi le);
my..component -

>addTextObject (a~text,...bj);

my...component->putObj~ect U;

void Add_SubCornponent(char* dbname, char*
protoname, char'comp..name. char* parent)

OC~open(dbname);
OC-transactionStart U;
char temp(64];
mnt ver, var;
find...component~path (protoname,parent);
if(thepath !=O)H
sscanf(comp...name, "%s %d:%d*,temp,&var, &ver);
My_..String ptrl= My..String(*^")+(My...String(thepath) -

246

MyString(parent));
char 'ptrz (char*) ptrl;

Directory* a...directory= (Directory*)OCjlookup(ptr);
if(a...directory)(
OC-setWorkingoirectory(a..directory); /

(char')the-dir);
if (set~new~component~dir(comp...name)) (

//cout << "these are the values u<< ver << var
<<"\no;

CreateComponent (temp,var,ver);
COMPONENT 'ny..componentl = (COMPONENT*)

OC~lookup(temp);
char' ny~comp
strcat (my...comp, thepath);
COMPONENT 'my..component2 = (COMPONENT*)

OC~lookup (thepath);
if (my~component1==NULL)

cout <<" There is no such a component \n";
else(

if (my...component2 ==NULL)
cout <<" There is no such parent component \no;

else{
my...component2->addSubcornponent (my..component 1);

ny~coznponentl -
>addParentComponent (ry~component2);

else
cout << "there is no such parent directory \no;

else
cout << "there is no such parent component \no;
0C-transactionCommit (OC~doNothing);

OC...close U;

COMPONENT' Add-new_version(char' protoname,char* p~name)

char* comp...name= new char(strlen(p~name)+l]:
strcpy (comp..name, pname);
MyString temp3 (My...String(comp~name) +

My...String ("..seq'));
char 'temp2= (char*) ternp3;

247

int ver,var;
find...component~path(protonarne, comp..name);
if(thepath !=O)H

My..String(comp..name));
char *ptr= (char*) ptrl;
COMPONENT *my~cogmponentl = (COMPONENT*)

OCjlookup (thepath);
if(my...componentl != NULL)(
ver = my'componentl1->versionNuxnberoC)+1;
OC_setWorkingDirectory(ptr);
if (my...componentl->getNext_ýversion()== 0)

var = my~component1->vw.riationNumrbero;
else(
Sequencer* my~sequencer= (Sequencer*) OC..lookup (t emp2);

if(my...sequencer!= NULL)({
var = ny~sequencer->getValuefl;
my..sequencer->putabject U;

II OC~setWorkingoirectory(ptr);
if (set-newversion~dir(comp...name~var,ver))(
CreateComponent (comp~name,var,ver);
COMPONENT *mny..component2 = (COMPONENT*)

OCjlookup (comp~name);
if (my~componentl->getNext...version C)== 0)

my~componentl ->setNext._.yersion (my...compornent2
->CompnpentName U);

my~component1->putOb~ject U;
my~component2->setPrevious...version (my~component 1

->CumpnentName U);
List* my...list= my...componentl->subComponents U;
Iterator* my_iterator = inyjist->getlteratoro;
// For each item in the iterator
while(my~iterator->moreDatao){

COMPONENT* a~conp= (COMPONENT*) (Entity*)
((*my-iteratorH));

my~component2->addSubcomponent (a~comp);

my~component2->putObject U;
return my~component2;

else return NULL;

248

else return NULL;

char* generate...new~conf igurat ion (char* protoname. COMPONE!.ZT*
my...comp)

int var, ver~varl,verl;
char teznp[64];
char temnp2i64];

char temp3[64];
compPtr =NULL;
char* badr= new chartstrlen(my...comp-

>CompnentName()[+1];
strcpy (badr, my..comp-ý.-CompnentName U);
char* salahl=get-.last-token(badr);
char* comp-.namel=new char[strlen (saJlahl) +1];
strcpy (comp~namel, salahi);
sscanf(protoname. "%su,temp);
if (strcmp(comp~namel,temp)==O) (

vanl = my~comp->variationNunmberU;
yenl = nmy..comp->version~umTbero;
sprintf(ternp3,"%s %d:%do,temp, vanl, yerl);
return temp3;

else(
char* a_name= my~.comp->getPrevious_.version U;

FindPanent (protonaxne, aname);
if(cornpPtr !=NULL) (

ver = compPtr->versionNunibero+l;
char* ptrl=new char ~strlen (compPtr-

>CompnentName())+1];
strcpy (ptrl, compPtr->CompnentName U);
char* salah=get-last:_token(ptrl);
char* conp~name=new chartstrlen~salah)+l];
strcpy (comp~name, salah);

My_String temp= MyString(MAW) +(MyString(compPtr
->ComnpnentName () -MyString (comp...name));

char* ptr=(char') temp;
Directory* m~y...din=(Directory*)OCjookup(ptr);

OC_setWorkingDirectory(ny~din);
if (compPtr->getNext_version ()== 0)

var = compPtr->variationNuxnbero;
else(

sprintf(temp2, w%s%sw,comp...rame, "..seq");

249

Sequencer *
my~sequencer= (Sequencer*) OC-lookup (tenip2);

if(zny~sequencer!= NULL)
var = myy.sequencer->getValueo;
my,..sequencer->putObject U;

if (set~new~version_dir (conip..name, var, ver))

COMPONENT *my...component = new
COMPONENT (comp..name *var, ver);

my~component->TextObj ectList (compPtr
->TextObjectList U);

if (compPtr->getNext..versiono()== 0)

cornpPtr->setNext_..version (my...component
->CompnentNarne);

compPtr->putObject U;

my...component ->set Previous~.vers ion (compPt r
->CompnentName U);

List* my,..list = compPtr->subCornponentso;
Iterator* my...iterator =my..list->getlteratorU;
// For each item in the iterator
while (my...iterator->moreData U) {

COMPONENT* a-comp= (COMPONENT*) (Entity*)
((*my~iterator) ())

my,..component ->addSubcomponent (a~comp);

my...component -
>replace...subconponent (my~comp, comp~namel);

my..component->putObject U;
generate_newý.configurat ion (protoname, my~component);

else cout <<" no such dir: << ptr <<\n%;

else cout << "no such comp: 0 < a_name <<*"\no;

void ShowComponent(char* dbname, char*
protoname, char *comp..name)

OC...open(dbname);

250

OC..transactionStart o;
find...coznponent...path (protoname, coznp~name);
if(thepath !=O)(
COMPONENT *my..component= (COMPONENT*)

0C~lookup(thepath);
if (my..component== NULL) (
cout << Object: 0 < comp...name <<" is not in

DDB...\"

else(
zny~conmponent ->getComponentNarnes U;

OC-transactionCommit (OC~doNothing);
OC...closeo;

void ShowComponent...subtree (char' dbname, char*
protoname, char'comp..yiame)

OC..open (dbname);
OC-transact ionStart U;
find..component...path(protoname, cornp.name);
if(thepath !=O)(
COMPONENT 'rny-component= (COMPONENT')

OC~jookup (thepath);
if (my...component== NULL) (
cout << Object: " << comp~name << is not in

DDB...*

else(
my~cornponent->getComponentSubtreeNaznes U;

//ShowConiponent...subtree (protoname, comp...name);
OC..t ransact ionCornmi t(OC..doNothing);

OC-closeo;

void DeleteComponent (char' clbname, char' protoname,
char' cornp..nazne)

OC...open(dbnarne);
OC-transactionStart U;
find~component~..path(protoname, comp...name);

251

if(thepath !=O)(
COMPONENT 'my~component= (COMPONENT*)

OC...lookup (thepath);
if (mny.cornponent== NULL)
cout << NObject: * << comp~name <<% is not in

DDB.. \n"';
else(

my...component->deleteComponentText o;
my...component->deleteobject (FALSE);

else
cout << "there is no such component \n'S;

OC-transactionCommit (OC_doNothing);
OC...closeo;

void DumpComponent (char' protonarne, char' comp~name)

find...component..path (protoname, comp..name);
if(thepath !=O)H
COMPONENT *my-component= (COMPONENT*)

OClookup (thepath);
if (my~component== NULL)
cout << "Object: « < comp~name <<, is not in

DDB... Wf';
else(

my...component->getComponentSource ('w");

else
cout << *there is no such component \n"S;

void Dump~lmp_..File1 (char' protoname, char* comp~name)

find~component..path(protoname, comp~name);
if(thepath !=O)H
COMPONENT 'my~component= (COMPONENT')

OC_lookup(thepath);
if (my...component== NULL)
cout << "Object: S << comp~name <<N is not in

DDB.. .\n"S;
else(

my...component->getlMPfile(*'w'S);

252

r1

else
cout << there is no such component \n*;

void Dump_.Spec..Filel (char' protoname, char' comp~name)

find...component...path(protoname, comp-name);
if~thepath !=O)(
COMPONENT 'my..component = (COMPONENT*)

OCjlookup (thepath);
if (my~component== NULL)
cout << Object: « < comp~name <<" is not in

DDB...\o
else(

ny~component->getSPECfile("wk);

else
cout << "there is no such component \no;

void DuxnpComponent~subtree(char' dbname, char*
protoname,char' comp-name)

OC~open(dbname);
OC-transactionStart 0;
find~coxnponent...path (protoname, comp-name);
if(thepath !=O)(
COMPONENT 'xr-component = (COMPONENT')

OCjookup (thepath);
if (my component=- NULL)
cout << *Object: 0 < conp-nanie <<" is not in

DDB.. .n*
else

my..component->getComponentSubtreeSource("wi);

else
cout << "there is no such component \no;

OC-transactionCornmit (OC~doNothing);
OC...closeo;

void Duznp_.version(char' dbnazne, char' protoname~char'
comp...name)

253

OC...open(dbname);
OQ..transactionStart 0;
find...version...path(protoname, comp~name);

1/ ~cout << v...path << *\no*;
COMPONENT *my...component= (COMPONENT*)

OC_lookup(v..path);
if (my~component== NULL)
cout << "Object: " << comp-name <<* is not in

DOS... \o
e 1s e

rny~component->get('omponentSubtreeSource (w");

else
cout << *there is no such component \no;

OC-transactionCommit (OC...doNothing);
OC-.close 0;

void Dump...Imp_.File(char* dbname, char* protoname,char*
comp...name)

OC~open(dbname);
OC-transactionStart 0;
find...version...path (protoname, comp~name);
if(v...path !=O){

I,,cout << v-path << \n-;
COMPONENT *my component= (COMPONENT*)

OC..lookup (v...path);
if (my...component== NULL)
cout << Object: 0 < comp...name <<" is not in

DOB...\;
else

my~component->getlMPfile w0);

else
cout << *there is no such component \no;

OC-tr~ansactionConmit (OC-doNothing);
OC-close 0;

void DumpSpecFile(char* dbname, char* protoname~char*
comp...name)

254

OC-open (dbname);
OC-transactionStart U;
find..version...path(protoname, comp..name);
if(v...path !=0)(

/1 cout << v-.path << "\no;
COMPONENT *my...componenta (COMPONENT*)

OC..lookup(v...path);
if (zny.cornponent=z NULL)
cout << wobject: *«. comp...name <<0 is not in

DDB...\o
else

my...component->getSPECfile ("w);

else
cout << "there is no such component \n";

OCCtransactionComnit (0C-doNothing);
OC-.closeo;

0C..Boolean set_New-.prototypeDirectory(char* aName)

/1char dir..namef 641;
Directory *prototype...dir = (Directoryt)O;
Directory *dboti = (Directory*)O;
Directory *cornp..dir= (Directory*) 0;
ddbRootDir =(Directory *)

OC~lookup (DESIGN_DATABASE_DIRECTORY);
if (ddbRootDir)

OC..setWorkingDirectory (ddbRootDir);
else

ddbRootDir =new Directory (DES IGNLDATABAS E..D IRECTORY);
ddbRootDir ->putObjecto;

OC..setWorkingDirectory (ddbRootDir);

MyString temp(MyString(awame) +MyString(~dir1));
char* dir-name=(char*) temp.-
prototype~dir= (Directory *) OQ.,lookup (dir~name);
if (prototype..dir)

I
I/CC_setWorkingDirectory(prototype~dir);

cout << "Prototype: «1< aName << 0 already exist\n,,;
return FALSE;

255

el~se(
prototype..dir new Directory(dir~narne);
prototype...dir ->putObjecto;

OC...setWorkingDirectory (prototype-dir);
MyString

tempi (My...String (aName) .MyString C ~seqo));
char* seq-name = (char*) tempi;

1/cout <<Seq~name: 0 < seq~name <<O\n m ;

Sequencer* rrysequencer= new Sequencer (seq~name);
my...sequencer->putObject o;

My...String temp2(MyString(aName)+My...Striflg("l1"));
char *p-dir = (char*)ternp2;
comp...dir =new Directory(p..dir);
comp....dir ->putobject();

OC_setWorkingDirectory(comp...dir);
return TRUE;

OCBoolean set~jiew...component~dir (char* aName)

int myver=O;
int myvar=O;
char texnp[64];
char templ[641;
char temp2f641;
sscanf(aName O%s %d:%d", temp,&myvar, &myver);
sprintf(templ, '%s%d%dO, temp,myvar,myver);
sprintf(temp2 n%s%s m, temp, O_dirm);
Directory *ý:omp~dir= (Directory *) OC_lookup(temp2);
if (comp~..dir)

//OC..setWorkingDirectory (comp...dir);
cout << *component: « < temp <<u already exist\n";
return FALSE;

else

comp.~.dir = new Directory(temp2);
comp...dir -> putObject();
OC..set WorkingDi rectory (comp..dir);
//create a sequencer object
char seq.name f64] ;
sprintf(seq-name, "%s%s",temp, "seq'1;
Sequencer* my-sequencer= new Sequencer(secL.name);
my..sequencer->putObjectoV;

256

//cout << *the new component~dir: « < texnp2 «*\nlU;

Directory *version...dir= new Directory(ternpl);
version_dir -> putObjectfl;
OC~setWorkingDirectory (version...dir);
return TRUE;

OC_Boolean set_new_ýversion...dir (char* aName, int var, int ver)

char templ(641;
sprintf (tempt. m%s%d%d", aName.var,ver);
Directory *version_dir= (Directory *) OQ..lookup(templ);
if (version...dir)

OC~setWorkingDirectory (version...dir);
cout << Oersion_dir: « < tempi <<' already exist\n';
return FALSE;

else

version_dir =new Directory(templ);
version..dir ->putObjecti);

OC_setWorkingDirectory(version_dir);
//cout << "the new version~dir: 0 < tempt <*\fn";

return TRUE;

void f ind...component...path (char* protoname, char-*comp...name)

char dir-name[64];
char temp(64];
thepath=O;
mnt ver, var;
Directory *prototype dir = (Directory*>-v;
Directory *ddbRootDir = (Dirpctoi.y*)O;
Directory *comp~dIr= (Directory*) 0;
ddbRootDir = (Directory *)

OC...lookup (DESIGN_DATABASE_.DIRECTORY);
if (ddbRootDir)

OC~setWorkingDirectory (ddbRootDir);

257

else(
cout << *there is no database as: 8<

DES IGN...DATABASEDIRECTORY <<'\n";
return;

sscanf(protoname, O%s %d:%do, temp, &var, &ver);
sprintf(dir..name, "%s%s", temp, "dir");
prototype~dir= (Directory *) OCjookup(dir...name);
if (prototype~dir)

0C..setworkingDirectory (prototype..dir);

else(
cout << "there is no prototype as: *<< dir..naxne <<"\n";
return;

sprintf(dir...name, "%s%d%d", temp, var,ver);
comp~dir= (Directory *) OCjlookup(dir~name);
if (!comp...dir)

cout << *there is no such version as: 0<< temp << var
<<ver <<*\no;

return;

else(
OC_setWorkingDirectory(comp~dir);
COMPONENT* my...component= (COMPONENT*)OC...lookup (temp);
iy~component ->find..a~component (comp..name);

void FindParent (char* protoname, char*comp...name)

char dir-name(641;
char temp(641;
thepath=O;
int ver, var;
Directory *prototype dir = (Directory*)O;
Directory *ddbRootDir =(Directory*)Q;
Directory *comp~dir= (Directory*) 0;
ddbRootDir = (Directory *)

OC_lookup (DES IGN_.DATABASEDIRECTORY);
if (ddbRootDir)

OC...setWorkingDirectory (ddbRootDir);

258

else(
cout<<"there is no database as:

"«<DESIGN...DATABASEDIRECTORY <<"\n*;
return;

sscanf(protoname, O%s %d:%d*, temp, &var, &ver);
sprintf(dirjname,w%s%s0, temp1 '...dir');
prototype..dir= (Directory *) OQIookup (dir~name);
if (prototype_..dir)

OClrsetWorkingDirectory (prototype...dir);

else(
cout << *there is no prototype~ as: "<< dir~name <<%\n";
return;

sprintf(dir...name, '%s%d%d*, temp, var,ver);
comp...dir= (Directory *) OC~lookup (dir~name);
if(!comp~dir)

cout << "there is no such version as: "<< temp << var
«<ver <<\n*;

return;

else(
OC_setWorkingDirectory(comp-..dir);
COMPONENT* my..component =(COMPONENT*)OC~lookup (temp);
niy..component->find..parent (comp...name);

void findversion...path(char* protoname, char*comp...name)

char temp[64];
mnt ver, var;
sscanf(comp,..name, O%s %d:%do, temp, &var, &ver);

find..component~path(protoname. temp);
if(thepath !=O)(
My...String tempi (MyString(thepath) -My..String(temp));
char* ptr=(char*) tempi;
char the_comp[256];

sprintf (the_comp,'%s%s%s%s%d%d','^',ptr,'>',temp,var,ver);
My,.String temp2 (MySt ring (the..comp) +

My-String (">') +My_.String (temp));
v~path= (char*)temp2;

259

else
cout <<*there is no such compon'mnt: *«< temp <<"\n";

void Show..prototypes(char* dbnarne)

OC..open(dbname);
OC-transactionStart (A

Directory *ddbRootDir = (Directory*)0;
ddbRootDir = (Directory *)

OCjlookup (DESIGNDATABASEDIRECTORY);
if CddbRootDir==NtJLL)
cout << 'NO prototypes in DDB yet \n";
else(
OC_setWorkingDirectory(ddbRootDir);

Directorylterator ry~iterator(ddbRootDir);
while (ry.,iterator.moreData A) (
Object* my-.object = mryjiteratoro;
char* temp =0;
temnp= zny..object->Nameo;
char* templ=temp + 9;
char* temp2 = new char(strlen(templ)-3];
strncpy(temp2,templ, tstrlen(templ)-4));

temp2[strlen(templ)-4]='\0';
cout << tenip2 << "\no;

OC-transactionConnmit (OC~doNothing);
OC-closefl;

void Show~component...vers ions (char* dbname, char*
protoname, char*comp...name)

OC...open(dbname);
OC-transact jonStart U;
find-component-path (protoname, comp~name);
if(thepath !=0){
My-String templ(MyString(""*)+(MyString(thepath) -

MyString(comp..name)));
char* ptr=(char*) ternpl;
D'rectory *comp-dir=(Directory *) OCjlookup(ptr);

if (comp..dir==NULL)
cout << "NO such component in DDB yet \n";

260

else(
OC~setWorkingDirectory(comp dir);
Directorylterator rny..iterator(cornp-dir);
while(ny_iterator.moreDatao()

Object* rny~object =my~..iterator();
char* temp =new charlstrlen(my..object->Nameol+1];
strcpy(ternp. my~object->Narne());
char* templ=get...last...token(temp);
My_..String temp2=My...Stririg(templ) -2;
char *ternp3 =(char*) temp2;
if(strcinp(temp3,comp...name)==0)
cout << tempi <<« \'

OC-transactionCormnit (OC_doNothing);
OC-close();

maincomp.cxx ,**S*******

*include 'zDatabase.h>
#include <Directory.h>
*include <stream.h>

extern "C"

dinclude <stddef.h.'
#include <string.h>
tinclude <ctype.h.

#include "compOperations .h"

31cbals
cha. *1ir!;rrnePtr
'/char *btlarez *supportnB";
char'* DES:3GN_DAT-ABAS-_E DIPEC-T2?;Y=Dý'esignD)ýý;
char* thepath =(char')Q;
char* v-path =(char&)C;

OMP'IEN'coinpPt:r~tRJUL;

int mairniint argc~char *argv!1)

261

char 'option=(char*)O;
char *aName= (char') 0;
char *aNamel=(char*)0;
char *dbName=(char*l0;
char thename(64];
char theothername(64];

if (argv[1])

dbName = new char[strlen(argv(1])+1];
strcpy(dbName,argvf 1]);

if (argv[2J)

option = new char~strlen(argv(2])4KL];
strcpy(option, argv(21);

if(option(0] =='1){
IICreate Prototype

aName = new char[strlen(argv[3]l*1j;
strcpy(aNazne,argv[3]);
CreatePrototype(dbNarne, aNarne);
//exit;

else if(option[0] ==12)

/ /ShowComponent
aName = new char~strlen(argv[3])+l];

strcpy(aNarne,argv (3]);
aNameJ. = new charfstrlen(argv[4])+1];
strcpy(aNamel,argv[4]);
sprintftthenazme,*%s %s*,aName,aNamel);
aNamel = new char[str.'en(argv[5fl+1];
strcpy(aNamel,argv[5j1]
Showr-omponent (dbtlame, thename, arame 1);
//'exit;

I-se ifop--, nC' '3'
show subtree
arjamne =new char[str~en~argv-3~.;;-;

strcpy(aName,argv[31);
aNane: = new char(str Ien.a.3ri,.K4> ~i 1
st rzpyarlare..arg,. [4 j)
sprint 4(thename, * s %s, a::r-e,a~r.
aNainel = newchrStreaT.::
strcpy~alamel~argv[5])

ShowComponent~subtree (dbName, thename, aNarnel);
i/exit;

else if(option(OI == 4)
I//Add subCornponent

aName = new char(strlen(argvf3])+1];
strcpy(aNarne,argv[3 1);
aNamel = new char(strlen(argv[4])+l];
strcpy(aNaxnel,argv[4]);
sprintf(thename, "%s %s",.aNazne,aNamel);
aName = new char(strlen(argv[5])+1];
strcpy(aName,argv[51D;
aNaniel = new charfstrlen(argv(6])+lI;
strcpy(aNarnel,argv[61);
sprintf (theothernarne, %s

%s*,aName,aNarnel);
aNaznel = new charlstrlen(argv[7)1).W;
strcpy(aNaznel,argv[7D);
Add...SubComponent (dbNanie *theflaie,

theothername, aNarnel);
//exit;

else it(optionfO] ==151

1/Add new Version
aName = new charlstrlen(argv[3])+1];

strcpylaName,argv[3j);
aNarnel = new charfstrlen(argv[4])+1];
strcpy~aNaniel,argv[4]);
sprintf(thename,"%s %s*,aName,aNaniel);
aNamel = new char[strlen(argv[5fl*1];
strcpy(aNamel..argv[51);
Add-new-vers ion (thenarne, aNaznel);
I/exit (0)

else x±:option!O] ==-6{

;,' Dump comnponent
ai~are = new char~strlen(arqvE3]i+!!;
strcpy(aName,argv'L3]);
aNamel = new charlstrierflargv[4]V411;
strcpy(aNamel~argv[4])
sprintrf (thename. *%s sameanl
aNarnel = new char~str1enfkargvj5!:-I>,
s tr cpy (a!.ame 1, arg'., (5]
DumpComponent (thenamne, aName~.!;

263

else if(option(O] ==67(
aName = new char(strlen(argv(3fl+l];
st rcpy (aNazne ,argv [31) ;
aNamel =new char(strlen(argv[4])+lJ;
strcpy(aNamel,argv[41l;
sprintf(thename, "%s %so~aName,aNamel);
aNamel = new char(strlen(argv[5])+l];
strcpy(aNamel,argv[51);

DunmpComponent...subtree(dbName, thenazne~aNaznel);

else if(option[O] == 6-
Show...prototypes (dbName);

else if(option[OI == 41
aNanie = new char(strlen(argv[3])+l];
strcpy(aName,argv(3]);
//aNamel = new charfstrlen(argv[4])+l];
//strcpy(aNamel,argv(41);
sprintf(thename, a%s

%s:%s*,aName,"lN,UI';
aName = new char[strlen(argv[41)+l];
strcpylaNarne,argv[4 I);
aNamel = new char[strlen(argv(5])+lj;
strcpy(aNarnel,argv[5J);
sprintf (theothername, "%s

* "aName, aNamel);

Duxnp..vers ion (dbName, thename, theothername);

else if(option[Ol. == $a-)(
aName =new char~strlen(argv[31)+l;
strcpy(aNazne,argv[3J);
//aNaxnel = new char(strlen(argv[4])+l];
//strcpy(aNamel,argv(4J);
sprintf (thename, "%s

aName =new char[strlen(argv[4])+11;
strcpy(aName,argv(4]);
aNamel = new charfstrlen(argv[51)+1J;
strcpy(aNamel,argv[5]);
sprintf (theothername,"%s

%s*,aNarne,aNamel);

DumpSpec_File (dbNarne.thenarne.theothername);

264

else if(optiontO] =II
aName = new char[strlen(argv[3)P+11;
strcpy(aName,argv[3 1);
//aNamel = new char~strlen(argv[4])+l];
//strcpy(aNamel,argv [4]);
sprintf (thename. "%s

%s:%s*,aName,0", "1");
aName = new charfstrlen(argv[41D+l];
strcpy(aName,argv [4));
aNamel = new char(strlen(argv(53l+1];
strcpy(aNamel,argv[51);
sprintf (theothernarne, %s

%s,aName,aNamel);

Dump...Imp...File (dbName, thenaxne, theothername);

else if(option(O] == II
//show subtree

aName = new char~strlen(argv(31l+li;
strcpy(aNaxne,argv[3 I);
aNaxnel = new char[strlen(argv[4]D.1];
strcpy(awamel,argv(4] ;
sprintf (thename, "%s %s*,aNanie,aNamnel);
aNamel = new char[strlen(argv(5])+l];
strcpy~aNamel,argv(51);
Show_component_versions (dbName, thenarne,

aNarnel);
//exit;

else
cout «<"Wrong Option: << option <<N

Try again \no;

3. Class Designer

personmh *g***,***************,*******

#include <Reference .h>
#include <Object .h>.
#include <List .h>

class Person :public Object

265

private:
int priv~level;
int priv...status;

public:

// Constructors
Person(char* name=(char*)O,int level= 0, int status=0);
Person (APL*);

// Get direct type
Type *getDirectType U;

// Accessors
int PersonLevel();
void PersonLevel(int]evel);
int PersonStatus U;
void PersonStatus(int status);
void displayo;

personcxx x

#include *person~h"
#include <Directory .h>
#include <Object .h>
#include <stream.h>

I---
IIconstructors
I---

Person::Person(APL *theAPL)
Object (theAPL)

Person::Person(char* narne,int level, mnt status):
Object (name)

initDirectType((Type *)OC_lookup("Person"));
priv~level = level;
priv_s,.atus= status;

266

I/ accessors
//--

Type *Person::getDirectType()
(

return (Type*)OClookup(wPerson");
I

void Person::PersonLevel(int level)
(

privlevel = level;

int Person::PersonLevel()
(

return priv_level;

void Person::PersonStatus(int status)
(

privstatus= status;
}
int Person::PersonStatus()
(

return privstatus;

SetOperations.h *~*~*************,

#include <Database.h>
#include <Directory.h> // for Object naming
#include <Set.h> II for Set class
#include <stream.h>
#include <string.h>
#include <stdio.h>
#include "person.h"

void trivial();
void addDesigner(char* dbName,char* aName,int

Level);

267

void showDesigners(char* dbName);
void deleteDesigner(char* dbName,chart aName);
void changeExpLevel(char* dbName,char* aName, int

Level);
void changeStatus(char' dbName,char' aName);
void showDesigner(char* dbName,char* aName);

SetOperations.cxx *

#include <Database.h>
#include <Directory.h> I/ for Object naming
#include <Set.h> // for Set class
#include <List.h> I! for Set class
#include <stream.h>
#include <stdio.h>
#include <Type.h>
#include <Object.h>
#include "SetOperations.h"

//static char *levels[3] = ("Low", "Medium", "High");
//static char *States(2] = {"Free","Busy"};

extern char *levels[3];
extern char *States(2];

// Add designer
void addDesigner(char* dbName,char* aName,int Level)
(

char personString[64];
OCopen(dbName);
OC-transactionStart();
// Create designer objects and insert into set

Person *aPerson = (Person*)OC_lookup(aName);
if (aPerson == NULL) {

1/ cout << "Creating designer object: "<< aName <<
.. \n";

// Create a designer object
aPerson = new Person(aName, Level, 0);
// Put it in the database
aPerson->putObject();

)else
cout << "Designer object: "<< aName << " already

268

exist ...\o

OC-.transacti.onComrxt o;
OC-close();

void showDesigners(char* dbName)

0C~open(dbName);
0C-transactionStart o;
Instancelterator it ((Type*) OCjookup("Personl));
while (it.moreDataU) (

Person* nextPerson = (Person*) (Entity')it();
cout.width(24);

cout.setf(ios::left,ios::adjustfield);
cout << nextPerson->Nanieo;
cout.width(19);
cout.setf(ios::left,ios::adjustfield);
cout «<levels InextPerson->PersonLevel W];
cout «<States fnextPerson->PersoflStatus C)I <<"\no;

it.Destroyfl;
OC-transactionCommit ~
OC...closeo;

//Delete desian(-
void Q~ Zinrca'dbName,char* aName)

OC...open (dbNarne);
OC~transactionStart U;

// Get the item
Person 'aPerson = (Person')OC...lookup(aName);
if (aPerson == NULL)

cout <<« Designer: * << aNamne <<« not in the Database

IICreate a designer object
else {

IIPrint out its name
IIcout << "Removing "<< aPerson->Name() <<I«

IIRemove it
aPerson->deleteobject U;

OC...transactionCommit()
0C-close U;

269

// Change the designer's expertise level
void changeExpLevel(char* dbName,char* aName, int Level)
(

OCopen(dbName);
OC-transactionStart();
Person *aPerson = (Person*)OC-lookup(aName);
if (aPerson == NULL)

cout << " Designer: 0 << aName << not in the Database
Wn;

// change his expertise level
else (

// cout <<*Designer's old Expertise = "<<levels[aPerson-
>PersonLevel()];
// cout << "\no;

// set the new level
aPerson->PersonLevel(Level);
// Put it in the database
aPerson->putObject);

I

OC_transactionCommit();
OC_close(;

void changeStatus(char* dbName,char' aName)
(

OCopen(dbName);
OCtransactionStart(U;
int S = 0;
Person *aPerson = (Person')OClookup(aName):
if (aPerson == NULL)

cout << " Designer: " << aName << " -. t in the Database
\n";

else (
// change his status
if (aPerson->PersonStatus)==0)

S = 1;
else {

if (aPerson->PersonStatus)== 1)
S = 0;

I

II set the new status
aPerson->PersonStatus(S);
/1 Put it in the database

270

aPerson->putObjecto~;

OC-.tranSactionCornmit o;
OC...closeU;

maindes.cxx ********************t*****t*t

#include <string.h>
#include oSetOperations .he
// Globals
char *levels[3] = (*Low", 'Medium-~, 'High-);
char -Statesf21 = {"Free*,*BusyN};

int main(int argc,char targv[])

char *options (chart) 0;
char *aName= (char) 0;
char *d~ae(char*) 0;
char *mylevel...(chart) 0;
int Level=O;

if (argv(lj)

dbName = new char~strlen(argv[12)+lj;
strcpy(dbNamne,argv~l]);

if (arg'v[2])

option znew char~strlen(argv(2])+l];
strcpy(option, argv(21l;

if(option(0] ==,I,)(
//Add designer

aName = new chartstrlen(argv(3])+1];
strcpy(aNamne,argv(3]);
xnylevel= new chartstrlen(argv[4]l+l];

strcpy(rnylevel,argv[4]);
Level=(int) mylevel(Oj- 48;
addDesigner(dbNarne, aName, Level);
f/exit;

else if(optioniOl =='2)
showDesigners (dbName);
//exit;

2711

else if(option(OJ ==-3)

aName = new charfstrlen(argv[3])+l];
strcpy(aName,argv[3]);
deleteDesigner(dbNamfe, aName);
//exit;

else if(option[O] ==14)

aName = new char(strlen(argv[3])+11;
strcpy(awame,argv[3D);
mylevel= new char(strlen(argv[4])*l];
strcpy(mylevel,argv[4J);
Level=(int) mylevel(O]- 48;
changeExpLevel (dbName, aNarne, Level);
//exit;

else if(option[O] ==15)
aName = new char~strlen(argv[3])+l];
strcpy(aNanie,argv[31D;

changeStatus(dbName, aNaxue);
I/exit (0)

4. Class Assignment

#include <Reference .h>
#include <Object .h>
#include <List.h>
#include "support-classes.h"

class Schedule
public Object

private:
char* priv~designer;
Time priv~finish;
Time priv..start;

public:

IIConstructors
Schedule (char* aName= (charf 0, char*

designer=(charfl)O)

272

Schedule (APL*);

IIGet direct type
Type *getDirectType();

iiAccessors
char* AssignedDesigne..);

void AssignedDesigner(char* designer);
Time AssignmentStart o;
void AssignmentStart (Time EstimatedStart);
Time AssignmentFinish();
void AssignmentFinish(Time EstimatedFinish);

sched.cxx

#include <Directory.h
#include <Object .h>
#include <streaxn.h>
#include Osched.hw
#include "support~classes .h

I,---
IIconstructors for the assignment class
I,--

Schedule::Schedule(APL *theAPL):
Object(theAPLI ,priv..start((APL*)O), priv...finish((APL*)O)

Schedule: :Schedule(char* aName,char* designer):
Object (aName),
priv-start(O,O..OO,C), priv..finish(O,Q,Q,O,O)

initDirectType((Type *)OC_1ookup("Schedu~e*));
priv_designer = designer;

I,--
IIaccessors
/1--

Type *Schedule: :getDirectType()

273

return (Type*)OC_lookup("Schedule");

void Schedule: :AssignedDesigfler(char* designer;

priv~designer = designer;

char*Schedule :: AsrfignedDesignero(

return priv~designer;

Tim~e Schedule:: AssignmentStart()

return priv~start;

void Schedule:: AssignrmentStart(Time EstimatedStart)

priv~start= EstimatedStart;

Time Schedule:: AssignmentFinish()

return priv...finish;

void Schedule:: AssignmentFinish(Time EstimatedFinish)

privjfinish= EstimatedFinish;

sched~p.h

#ifndef __SCHEDOPH
#define __SCHEDOPH4
void addAssignment (char *dbname,char* listNarne, char*
step_id,

char* date,imt start,int fin.a.3h,char* aName);
void showSchedule(char *dbname,char* listName);
void update_start_timetchar *dbname,char* listc~ame, char*

designer);
void getSchedule(char *dbname,char* listName);

274

void deleteSchedule(char *dbnarne,char* listName);
void deleteAssignrnent (char *dbname..char* lislName,chair*
stepjid);
void deleteAssigrlmentl(char* listName,ct.ar* step_id);
void getSchedule_l(char *dbname,char* listNarne,char*

#endif

#iniclude <Database.h>
#include <Directory.h> IIfor object naming
#include <Set.h> IIfor Set class
#include <List.h> //for Set class
#include <stream.h>
#include <stdio.h>
#include <Iype.h>
#include <Object .h>
#include <string.h>

#include astep.h"
#include "sched.h"
#include "support...classes~h
#include "sched~p.h"

// Add Assiganment
void addAssignment(char *dbname,char* listNaxne,chi.o* Mystep,
char* Mydate,int start,int finish, char* MyD~name)

OC-open(dbname);
OC-transact ionStart U;
IICreate assigrnment object and insert into list

List *aList = (List *)OC~lookup(listName);
/1If it does not exist, create it

if(aList == NULL) {
cout << "Creating list object .. \"
1/Create a new list called MySchedule

aList = new List

list~me);((Type*)OCjlookup("Schedule"),

//cout << aList->Name) << " already exists.\n';
Schedule *aSchedule

(Schedulet) C..lookup (Mystep);
if (aSchedule == NULL

275

//cout << "Creating record object: *<

Mystep <<" . ..\

// Create a designer object
aSchedule = new

Schedule(Mystep.MyD_name);
Time startTime(Mydate);
startTime=startTime+start;
Time finishTime(Mydate);
f inisnTime= finishTime+ finish;
agchedvile-- AssignmentStart (startTime);
aScheduie->

AssignrimentFinish(finishTime);
IIPut it in the database

aSchedule->putObject U;
IICheck to see if object is already in

list
iiThis is necessary because if object
//is already in list, the Insert will

add
IIit again to the list

if (aList->isMember(aSchedule) -

FALSE)
cout << 'Inserting 0<

aSchedule->Name) << 0 into list ...\o
//Insert object into list

aList->Insert (agchedule);
aList->putObject U;

else

Time startTime(Mydate);
startTime-startTime+start;
Time finisiiTixne(Mydate);
finishTime=finishTime+finish;
aSchedule-> AssignxnentStart(startTime);
aSchedule->

AssignmentFinish~finishTime);
aSchedule->AssignedDesigner (MyD..name);

IIPut it in the database
aSchedule->putobject U;

OC-transactionCommit.U
OC-close U;

276

void update~start~time(char *dbname,char* listName, char*
designer)

0C~open(dbname);
OC-transact jonStarto;
OCBoolean FOUND=FALSE;
IICreate assignment object and insert into list

List *aList = (List *)OC_lookup(lis 'ime);
iiIf it does not exist, create it

if(aList ! = NULL)
Iterator* anlterator =aList-

>getlterator()

1/For each item in the iterator
while (anlterator->moreDatao()&&

!FOUND)
Schedule* nextAssigninent

(Schedule*)
(Entity*) (*anlterator) ());

if (strcnp (neXt.ASSignnment

>AssignedDesigner C),designer) ::=O)(ON RE

nextAssiginment ->

AssignmentStart (nextAssignment->

AssignmentStartoC)+2);
nextAssignxnent
->putObj ect U

OC-transactionCoxnmitoC;
OC-closeo;

void showSchedule(char *dbname,char* listName)

Or--.open(dbname);
OC-transactionStart U;
List *aList = (List *)OC-.lookup~listName);
if(aList ==NULL) {

277

cout << "No Available Schedule .. \"
Or-transactionCommit U;
OC~close U;
return;

if (aList->Cardinality()==O)
cout << "No Available Schedule ..*

Iterator' anlterator = aLibt->getlteratoro;

iiFor each item in the iterator
while(anItcrat--->rnoreDataO)

Schedule* nextAssignment =(Schedule*)
(Entity') M(anlteratorM);(
cout .width (10);
cout.setf(ios::left.,ios::adjustfield);
cout << nextAssigunment->Namefl;
cout-width(20);
cout.setf(ios: :left~ios: :adjustfield);
cout << nextAssignxnent->

AssignxnentStart().makeStringo;
cout.width(20);
cout.setf(ios::left,ios::adjustfield);
cout «<nextAssigniment->
AssignxnentFinish().makeStringo;
cout << nextAssignment-

>AssignedDesignero(

delete anlterator;
OCCtransact ionCommit U;
OC_closeo;

void getSchedule(char 'dbname,char* listNa,-e)

OC..open(dbname);
OCCtransactionStarto;
int T2..T3;
List 'aList. = (List ')OC-.lookup(listName);
if(aList == NULL) (

cout << "No Such Schedule..\"
0C..transactionCommit (;
OCCcloseo2;
return;

278

Schedule* first-ass=(Schedule')aList
->getEntityElernent (0)

Time Tl=first-ass->AssignmentStart ()

Iterator* anlterator = aList->getlterator()

IIFor each item in the iterator
while(anlterator->more~atao))

Schedule* nextAssignment =(Schedule*)

(Entity') (*(anlteratorH)()
cout .width(l0);
cout.setf(ios::left,ios::adjustfield);
cout << nextAssignment->Name();
cout.width(20);
cout.setf(ios::left~ios::adjustfield);
T2=nextAssignment-> AssignmentStart ()-

Ti;
cout << T2;
cout .width(20);
cout~sett(ios::left~ios::adjustfield);
T3=nextAssignment-> AssignmentFzlishl) -

Ti;
cout <<T3;
cout << nextAssignxnent-

>AssignedDesignero(
<< "\no;

delete anlterator;
OCCtransactionCommiti);
OC-ciose ()

void getSchedule..l (char *dbname, char' listNaine, char'
cur-time)

OCCopen(dbname);
OCCtransact jonStart o;
List *aList = (List *)OC..lookup(listName);
if(aList ==NULL) {

// cout K< "No Such Schedule..\n,
OC-transactionCornmit H;
OC...closeo(
return;

279

Time Tl(cur_time);

Iterator* anlterator = aList->getIterator()

IIFor each item in the iterator
while(anlterator->moreDatao)

Schedule * nextAssigninent (Schedule*)
(Entity) C *anlterator)MC)

if(Tl > nextAssigninent-
>AssignmentStart t))(

cout.width(lO);
cout.setf(ios::left,ios::adjustfield);

cout << nextAssignment ->Name()

cout.width(20);
cout.sett(ios::left~ios::adjustfield);

int T3=nextAssignment->
AssignxnentFinish()-

Ti;
cout <<T3 «<\n";
cout << nextAssignxnent
->AssignedDesigner() <<"\

delete anlterator;
OC-transactionComnuit ;
0C-close U;

void deleteSchedule(char *dbname,char* listName)

OCo.pen(dbname);
OC-transactionStartoC;
List *aList = (List *)OC...lookup(listName);
if(aList == NULL) (

OC-transact ionConnitoC;
OC_closeo;
return;

//Delete the Schedule List
aList->deleteClusteroC;

OC-transact ionCommit U;
OQ-close U;

void deleteAssignxnent(char *dbname,char* listName, char*

280

step..id)

oc~open(dbname);
OC_transactionStart C)
OCBoolean FOUND=FALSE;
List 'aList = (List ')OClIookup(listNane);
if(aList == NULL)(

cout << "Nothing to delete .. \"
return;

Iterator* anlterator = aList->getlterator()

IIFor each item in the iterator
while(anlterator->moreData(&& !FOUND)

Schedule* nextAssignnent = (Scheduie*)
(Entity') M(anlterat~orH) (

if (sý:rcxnp(nextAssignmrent-,'Nameo,
step-..id)==O)

aList->Rernove (aList

>Index(nextAssignment));
nextAssignmrent -

>delete~bject U;
FOUND =TRUE;

if (aList->Cardinality()= 0)
aList->deleteObjecto;

else
aList->putObj-ct C)

OC-transact ionCommit 0;
OC-~close 0;

void deleteAssignmentl(char' list~axne, char' step..id)

OCBoolean FOUND=FALSE;
List 'aList = (List ')OC-lookup(listName);
if(aList ==NULL) {

II cout << *Nothing to delete .. \"
return;

Iterator' anlterator = aList->getlteratoro;

281

//For each item in the iterator
while(anlterator->moreData(&& !FOUND)f

Schedule* nextAssignment = (Schedule*)
(Entity') (*(anlterator) ()

if (strcmp(nextAssignment->NameoA,
step-id)==O)(

aList->Rernove (aList

>Index(nextAssignrnent)); etsinn-

>deleteObjecto(;
FOUND = TRUE;

aList->putObject U;

#include <Database.h>
#include <Directory.h> IIfor Object naming
#include <Set.h> /1for Set class
#include <str-eam.h>
#include <stdio.h>
#include <string.h>

#include "sched.h"
#include osupport~..classes .h"
include "schedop~h
int. main~int. argc~char 'argv[])

char 'option=(char*) 0;
char 'aName= (char') 0;
char *aNamel= (char') 0;
char 'aName2=(char*)0;
char *Dname= (char*) 0;
char *dbNamne= (char*) 0;
char datel(64];
char *listName="MySchedule";
int. vl.,v2;

if (argvll])

dbName = new char[strlen(argv[lI)i-l];
strcpy(dbName,argv~l]);

282

if (argj(2])

option new char~strlen(arg-1 2 1)+11;
strcpy(option, argv(21)

if~pinO =I)

//Add designer
aNarne =new char[strlen(argv[3))+l);

strcpy(aName,argvt3])
Dname= new char[strlen(argv[4 D)+l];
strcpy(Dnarne,argv[4]);
aNarnelz new char~strlen(argv[5I)+l];
strcpy(aNamel,argv[5]);
aName2z new char~strlen(argv[6])+1l1;
strcpy(aNarne2,argv[6]);
sprintf(datel, *%s %s",aNaxnel,aNamfe2);
aNarnel= new char[strlen(argv[?])*lJ;
strcpy(aNamel..argv(7]l;
sscanf(aNarr~e1, "%d",&vl);
aName2= new char(strlen(argv(B]1)-i;
strcpy(aNarne2,czrgv[8]);
sscanf(aNarne2, "%d*&v2);
addAssiganment (dbName, listNarne, aNarne,

datel,
v~2

Dnarne);

else if(option[O] = ~)
showSchedule(dbName, listName);

else if(option[O]
deleteSchedule(dbName, listNarne);

else if(option[O] ='4)
aName = new char~strlen(argvt3 1)+11;
strcpy(aNarne~argv[3]);
deleteAssignment (dbName,

listNarne,aNarne);

else if(option[O] == 5)
getSchedule(dbName, iiscName);

else if(optionfO] == 6)

283

aName =new char~strlcen(argvL3]).Ij;
strcpy(aName~aLgv[3]);
Dname= new char[strlen(argv[4])+1);
strcpy(Dname,argv[4]);
sprintf(datel,-%s ts",atlare,Dname);
getSchedule_1(dbName, listName,dcitel);

else if(option(Ol == 17)
aName = new char~strlen(argv[31l+I];
strcpy(aName~argv(3]);
update_start_time(dbNaine,

listName,aN.2me);

5. Class Time

support classes.h * * * * *

#ifndet __SUPPORT_CLASSES_H

#define __SUPPORTCLASSESH

class Time(

private:
unsigned priv...minutelnllour :11;
unsigned priv~hourlnDay :5;
unsigned priv~daylnMonth :5;
unsigned priv..monthlnYear :4;
unsigned priv~yearFroml993 :5;

public:
Timne(mnt min, mnt hour, mnt day, mnt month, mnt year
Time(char* dateTimeString);
Time(APLI theAPL);

Time operator+(mnt duration)
int operator-(Time& anotherTime);
OC_Boolean operator== (Time& anotherTime)
OC_Boolean operator>(Time& anotherTime)
char* makeString()
void displayo;

#endif /1__SUPPORTCLASSES-H

284

supportclasses.cxx ************* *

#include .T'ype.h,

#include •Ob3ect.h-
#include <GlobalEntirties.h.
#include <Database.h>
#include <Directory.h>
#inc'ude <stream.h-
extern "C"
(
#include <strings.h,
#include <ctype.h,
#include <stddef.h-
#include <string.h-
1

#ifndef _SUPPORTCLASSES_H
#include "supportclasses.h"
#endif

// Init nullTine
static Time nullTime(0,0,0,0,0);
// Constructor used for + operation, just initialize rields
Time::Time(int min, int hour, int day, int month, int year
priv_minuteInHour(min), privhourInDay (hour),
privdayInMonth (day), privmonthInYear(month),
privyearFroml993(year
{
I

/1 Activation Constructor
Time ::Time(APL*)
{

// Constructor used by end user, converts standard
// mm/dd/yy hh:
mm format to internal representation
Time::Time(char* dateTimeString

int month, day, year, hour, minute;

sscanf(dateTimeString, "%di'%d/%d %d:%d", &month,
&day,

&year,

285

&hour, &minute);
priv~ye-irFromI9Q3 =year-43;
priv'monthlnYear = month;
priv~daylnMonth zday;
ptiv~hourlnDay = hour;
prlv~minutF'-Hiour minute;

1/Adds duration to t-:ie Ihourlnflay field,

Time Time:

operator+' int duratiota

/1 unsigned ti, t2, t3, t4l,t5j;
iflt ti. t2, t3, t4,t5;
t4 =priv hourlnDay;

t4 = t4-,.duration;
tl=t4;
priv~hourlnDay=t4;

if (t4 > 16)(

t4 = (t4-16)%8 + 8;

priv hourlncay=t4;

t5=priv~dayln~onth;

t5 = (t5 +1+ (tl-16) /8);
priv..dayln~onth=t 5;

if (t5 > 30H{

r5= t5- 30;
priv..dayIni~1onth=t5;

t3=priv~monthlnYear;
t3= t3+1;
priv_monthlnYear=t3;
if (t3>12)(

t3=t3-12;

t2=priv~yearFroml993;
t 2-t2_+ 1;

priv..yEarFroml993=t2

Time result(priv-minutelnHour~priv-hourir.D~ay,

2N6

priv..daylnMonth~priv...morz-.hlnYear,priv~yearFroml993)
return resulk;

iisubtract two A.mnes resturnin~g the difference in hours,
int Time: :operaitor-(Time& my..time

.nt result;
int month, day, year. hour;
hour=priv-hourlnDay-mry~time .priv_hourlnDay;
day= pr-'v~dayIrn~onth-mry.tirne.priv...daylnMonth;
mor'tn= priv..monthlnYear-nty.time .priv~jnonthlnYear;
y,-ar=priv...yearFroml993-my~time .priv~yearFroml993;

result=hour+(day*8)*(month*240)+(year*12*240);
return result;

OC...Boolean Time: :operator==(Time& anotherTime

return (OC-.Boolean) (*(int*)this
* (int*)&anotherTime);

OC_.Boolean Tirne::operator>(Time& anotherTime

if (priv..yearFroml993 > anotherTime.priv~yearFroml993)
return TRUE;

el'se{
if (priv..yearFroml993 == anotherTime.priv..yearFroml993

priv..1nonthlnYear >anot-herTime priyvmonthlnYear)
return TRUE;

else{

if (priv...yearFroml993==anotherTinie.priv~yearFroml993 &&
priv~monthlnYear

anotherTime privjnonthlnYear &&
priv..daylnMonth > anotherTime .priv~daylnMonth)

return TRUE;
else(

if (priv...yearFroml993 -

anotherTime .priv..yearFroml993 &&
priv~jionthInYear =
anotherTime priv~monthlnYear &&

287

priv~daylnMonth =

anotherTime priv-daylnMonth &&
priv hourlnDay >

ariotherTime priv.,hourlnDay)
return TRUE;

else(
if Cpriv..yearFroml993 =

anotherTime .priv..yearFroml993 &&
privjnonthlnYear ==

anotherTime .priv~monthlnYear &&
priv...dayln.Month ==-

anotherTirne priv..daylnMonth &&
privjiourlnDay ==

anotherTime priv~hourlnDay &
priv.,.minutelnHour >

anotherTime priv_minut elnHour)
return TRUE;
else

return FALSE;

char* Time: :makeString(

char result[16]
sprintf (result. %.2d/%.2d/%.2d

% .2d:% .2dM ,priv..monthlnYear, priv..daylnMonth,
priv...yearFroml993+93, priv~.hourInDay

priv_ininuteInHour);
return (strdup (result));

void Time:: displayo)

printf (" %d/%d/%d %d:%d ',privjnonthlnYear,

priv~dayrLn~onth, priv~yearFroml993, priv_hourlnDay

priv...minutelnHour)

My_ýtring.h

288

#ifndef .jMy_.String...H
#define _My..String_..H

#include <iostrearn.h>

#include <stdio.h>
#include <string.h>

class MyString~rep

char* str;
int refs;
int length; IIdoes not include null byte

MyS.tring~rep(char t)

friend class My-..String;

class MyString

My...String...rep *r;
my-String (char"*);

public:
MyString (My..String&);
MY-String(char* = 0");
MyStringfl;
myString& operator= (MyString);
operator char *();
const char* stringo;
int S~r...lengtho;
void print o;
friend int operator < (MyString, My-String);
riend mnt operator > (My_.String, My...String);

friend int operator ==(MyString, My...String);
friend mnt operator !=(My_.String, My_.String);
friend MyString operator+ (My..String, MySt ring);

friend My...String operator- (My_..String, My-..String);
friend My..String operator- (MyString, int);
friend ostream& operator<< (ostreamn&, MyString);

friend istreanm& operator>> (istream&, My_String&);

#endif _My_..String..Y

289

Nlyjtring.cxx

#include mmy_.String.ho

MyString..rep: :MyString~rep(char *s)

str = new char[(length =strien(s)) +1];

strcpy(str, s);
refs = 1;

MyString..rep: :My...String~rep(char** ptrptr)

str =*ptrptr;
refs =1;

length = strlen(str);

MyString: :MyString(char *s)

r = new MyString...rep(s);

My..String: :My-..String(char** ptz-ptr)

r = new MyString..rep(ptrptr);

My..String: :MyString(My_.String &init)

* = init.r;
* ->refs++;

MyString& MyString: :operator=(MyString str)

if (!--r->refs)

delete r->str;
delete r;

r =str.r;
r ->refs++;

return *this;

290

MyString::-MyStringoC

if (!--r->refs)

delete r->str;
delete r;

MY...String::operator char* (

char *p = new char[(r->leflgth) + 1];
strcpy(p,r->str);
return p;

const char* My..String::string()

return (r->str);

int operator< (My...Striflg si., My_.String s2)

return (strcmp(sl.striflgo, s2.string() < 0)

int operator> (My_..Striflg si, My...String s2)

return (strcmp(sl.stringo, s2.string() > 0)

int operator==(My_.String si, MyString s2)

return (strcmp (sl. stringU s2. string())= 0)

int operator!=(My_..String si, My...String s2)

return(strcmp (sl.string(), s2.string())o 0)

ostream& operator<< (ostream& o, My..String si)

o << sl.string()

291

return o;

istrearn& operator>> (istream& o, MyString& s2)

char buf [256];
o >> buf;
s2 = MyString(buf);
return 0;

int My...String: :Str-length()

return (r->length)

void My...String: :print()

/* MyString operator+. (My-..String si, MyString s2)

char *t;
t = new char~sl.Str_length() + s2.Str~length() 1];
strcpy(t,sl.stringofl;

delete t;
return s3;

My...String operator+. (My...StrinVj si, My...String s2)

char *t;
t = new charfsl.Strjlength() + s2.Str_length()

strcat(t,s2.stringfl);

return s3;

292

MyString operator- (MyString sl, MyString s2)
char* t;
int n = sl.Strlength() - 2*s2.Strlength() - 4;
t = new char[n + 1];
char* p;
strncpy(t, p = (char*)sl, n);
tin] = 1\0';
MyString s3(&t);
delete[] p;
return s3;

I

MyString operator- (MyString sl, int n)
char* t;
int k = sl.Str_length(- n
t = new char[k+l];
char* p;
strncpy(t, p = (char*)sl, k);
t[k] = '\0';
MyString s3(&t);
delete(] p;
return s3;

C. PROGRAMS

There are two main Ada packages in addition to the main programs for the manager

interface, designer interface and the Tae program on top of the manager interface. The two

main packages are the Ada interface to C++ package that enables the Ada programs to

access the data in the design database and , e scheduler package that implements the

scheduling algorithm. In the rest of this section we include a copy of the Ada code for both

the specification and the implementation of both packages in addition to the code for the

other main programs. The module dependency diagram for the relations between different

program modules is shown in Figure 32.

1. The Ada Interface to DDB Package

ECSOperations-s.a***************************

-- Title : The scheduler spec package
-- Author : Salah badr
-- Date : 4 Sept 1993

293

0

CQ
C"U

U0

C 42!
Z6

- E

00

0C
Co

FIGURE 32. ECS Module dependency diagram

294

-- Revised
-- System Suns7
-- Compiler verdixAda
-- Description

with TEXTIO; -- BASICNUM_IO;
use TEXT.IO; -- , BASICNUM_IO
with scheduler; use scheduler;

-- generic

package ECS_OPERATIONS is

package nat_io is new integer_io(natural); use natio;

procedure systemi._call(command :string);

procedure automail(name string;
step_id string);

procedure automail2(name string;
stepid string);

procedure auto_mail3(name string;
stepid string);

- - * COMPONENET OPERATIONS *

procedure CreatePrototype(ddbname :string;
option :string;
protoname :string);

procedure Show_Prototypes(ddbname :string;
option :string);

-- This function is general for all the operations: Show
-- Component,Show SubTree, Add New Version, Dump
-- Component,and Dump SubTree The only difference is the
-- option number

procedure general_function(ddbname :string;
option :string:
protoname :string;
varver :string;

295

comp name :string);

procedure AddSubComponent(ddbname :string;
option :string;
protoname :string;
var_ver :string;
comp_name :string;
varl_yerl :string;
parent :string);

procedure Dump._version(ddbname :string;
option :string;
protoname :string;
comp name :string;
varl_verl :string);

--- *STEP OPERATIONS

procedure CreateStep(ddbname :string;
option :string;
proto :string;
comp :string);

-- this function show either one step or a set of steps
-- according to the option given.
procedure ShowStep(ddbname :string;

option :string;
stepid :string);

procedure getscheddata(ddbname :string;
stepid :string);

procedure get_sched_data_2(ddbname :string;
d_name :string);

-- This function is general for all the operations: delete
-- input (primary, secondary or affected modules), updating
-- precedence,priority, exp_level duration, status or
-- designer's name. The only difference is the option number

procedure general_update(ddbname :string;
option :string;
stepid :string;

296

value :string);

procedure create_substep(ddbname :string;
option :string;
stepid :string;
p_input :string;

duration :string);

-- This function does add step inputs primary, secondary or
-- affected modules. The only difference is the option number
procedure update_time(ddbname :string;

option :string;
step_id :string;
thetime :string);

procedure remove_s~ep-from_schedule(ddbname :string;
option :string;
stepid :string;
theDate :string);

procedure EarlyWarning(ddbname :string;
option :string;
manager :string);

- * SCHEDULE OPERATIONS

procedure AddAssignment(ddbname :string;
option :string;
stepid :string;
desname :string;
the-time :string;
start :string;
finish :string);

procedure getcurrenttime(the_time:out string);

procedure Show_Schedule(ddbname:string;
option :string);

procedure getscheddata_l(ddbname :string;
d-name :string);

procedure GetSchedule(ddbname:string;
option :string);

297

procedure Delete_Assignment(ddbname:string;
option :string;
stepid:string);

procedure DeleteSchedule(ddbname:string;
option :string);

procedure SAVESCHEDULE(HEAD : in LINK1;
dbname: string;
d-vector: in vector;
my_list : D_LINK);

procedure MAIN(indicator: in integer);

-* DEASIGNER POOL OPERATIONS *

procedure DESIGNER-MENU;
procedure DESIGNER_OPERATIONS;

procedure Add_.designer(ddbname:string;
option :string;
desname:string;
level :string);

procedure Showdesigner(ddbname:string;
option :string);

procedure putdesigners(ddbname:string;
option :string);

procedure Deletedesigner(ddbname:string;
option :string;
desname:string);

procedure Changeexp_level(ddbname:string;
option :string;
desname:string;
level :string);

procedure Changestatus(ddbname:string;
option :string;
desname:string);

end ECS_OPERATIONS;

298

i

ECSOperations b.a ,

-- Title Scheduler package body
-- Author Salah badr
-- Date : 4 Sept 1993
-- Revised
-- System Suns7
-- Compiler VerdixAda
-- Description

with textio, system;
use text_io, system;
wi.th scheduler; use scheduler;

package body ECSOPERATIONS is
Namel : STRING(I .9) =supportDB";
option STRING(l.. .)
Name3 STRING(l..64);
Name4 : STRING(l..64);
Name5 : STRING(l. 64);
Name6 STRING(l..64);
Name7 STRING(l..64);
D_status STRING(l..4);
SELECTOR : natural := 0;
Length integer;
Lengthl integer;
data-file FILE-TYPE;
answer character :='y';
procedure systemcall(command :string) is

procedure system._C(command :address);
pragma INTERFACE(C, system_C);
pragma INTERFACENAME(systemC, "_system*);
temp : constant STRING := command&ASCII.NUL;
error: integer;

begin
systemC(TEMP'ADDRESS);

end system._call;

procedure auto_mail(name string;
stepid : string)is

begin
CREATE(datafile, OUTFILE,"temp2");
put(data-file,nYou have been assigned the step no: ");

299

put (datajfile,step-id);
CLOSE(data-file);

system-call("mail '&namne&"< temp.'");
syst emrnal I(*rm temp2");

end 3uto-mail;

procedure auto_maill(name string;
step...id :string)is

begin
CREATE(data_file, OUT_FILE, "ternp2*);
put(data_file,"ATTENTION REQUIRED Step:)

put (data~file, step~id);
put(data...file,* should commit within an hour...");
CLOSE(data-file);
system.~.call(omail "&name&"< temp2");
systemn..call(orm tenp,2");

end auto__Maill;

procedure auto_mail2 (name :string;
stepjid :string)is

begin
CREATE(data_file, OUTFILE, "temp2*';
put (datajfile, "Your current assigned step: "

put (data..file,step...id);
put(data...file," has been Suspended ..."0);
CLOSE(data-file);
system...call ("mail "&namne&"< termp2");
system...call("rm temp2*);

end auto_mail2;

procedure alito_rrtail3 (name string;
step...id string) is

begin
CREATE(data_file, OUT_..FILE, "temp2*);
put (datajfile, "Your current assigned step:")
put (datajfile, step~id);
put~datajfile," has be±en abandoned...");
CLOSE(data-file);
systerqncall(omail "&name&"< temp2*);
systelw-call(Orm temp2");

end auto_mail3;

- - * COMPONENT OPERATIONS

300

procedure CreatePrototype(ddbname :string;
option :string;
protoname :string) is

begin
system_call(Omaincomp *&" "&ddbname&" "&option&"

"&protoname);
end Create-Prototype;

procedure ShowPrototypes(ddbname :string;
option :string) is

begin
system_call('maincomp *&" O&ddbname&" *&option&" >

ddbdisplays);
end ShowPrototypes;

-- This function is general for all the operations: Show
-- Component,Show SubTree. Add New Version, Dump Component,
-- and Dump SubTree The only difference is the option number

procedure general_function(ddbname :string;
option :string;
protoname :string;
var ver :string;
compname :string) is

begin
system_call(umaincomp O&ddbname&o N&option&O N&protoname&"

"O&varver&" O&compname);

end generalfunction;

procedure Add_SubComponent(ddbname :string;
option :string;
protoname :string;
var-ver :string;
compname :string;
varl.verl :string;
parent :string) is

begin
systemcall(omaincomp "&" "&ddbname&" "&option&"

"&protonamne&" 0
"&varver&N "&compname&" "&varlverl&"

"&parent);

end AddSubComponent;

301

procedure Dump_.version(ddbname :string;
option :string;
protoname :string;
compname :string;
varlverl :string) is

begin
systemcall(omaincomp N&O O&ddbname&" O&option&w

"&protoname&* 0

&compname&" "&varl_verl);
end Dumpversion;

- -, STEP OPERATIONS

-- option (1)
procedure CreateStep(ddbname :string;

option :string;
proto :string;
comp :string) is

begin
system_call(*mainstep *&* *&ddbname&w &option&% "&proto&"

"&comp);
end Create_Step;

-- this function show either one step(2) or a set of steps(3)
-- according to the option given.Same function is used for
-- commitstep(e), approve(c), and commit_substep(d)

procedure ShowStep(ddbname :string;
option :string;
step_id :string) is

begin
systemi._call(Omainstep m&* O&ddbname&* "&option&"

"&step-id&" > ddbdisplaym);
end Show_Step;

-- This function is general for all the operations:
-- status(7) or designer's name(8).
-- The only difference is the option number

procedure general_update(ddbname :string;
option :string;
stepid :string;

302

value :string) is

beg in
system...call (amainstep I&" O&ddbname&m &option&

"O&step..id&* O&value);
end general..update;

procedure create...substep (ddbname :string;
option :string;
step_id :string;
p~input :strinlg;
duration :string) is

the...time:string(l. .14);
begin

get...current...time(the-time);
systemý_call(mmainstep N&O &ddbname&l O&option&w

"N&step..id&m &p...input&m
&the-time&O O&duration&w >texnp8);

end create-~substep;

-- option (a)
procedure get...sched..data (ddbname :string;

step_id :string)is
the_time:string(1..14);

begin
get...current...t ime (the..t ime);
systemt_call~mmainstep "V O&ddbname&" a N&step...id&"

O&the~time&" >temps");
end get_sched_data;

-- option Wi
procedure get~sched...data..2 (ddbname :string;

d-.name :string)is
the_tizne:string(1..14);

begin
get..current~time (the~time);
systemr_call(Mmainstep ,'V "&ddbname&m 1 m&the...time&"

"O&d_name&" >temps");
end get_sched_data_2;

-- This funcLion updates start_time(5), and finish_time(6)
procedure update..time (ddbnarne :string;

option :strinlg;
step-id :string;
the_time :string) is

303

begin
system..call(omainstep 0&0 O&ddbname& *&option&"

*&step..id&o
&the-time);

end update...time;

-- option=f
procedure removestep..froM..schedule (ddbname :string;

option :string;
step...id

:string;
theDate :string) is

begin
system ~call(omainstep Ov& O&ddbname&o &option&O

O&step...id&" O&theoate&* >temrp4');
end remove...step..from..schedule;

-- option=k
procedure Earlyj.Jarning (ddbname :string;

option :string;
manager :string) is

the-time :string~l..14);
an~id :string(l. .5);
Name4 :string(l..64);
data~filel FILETYPE;
begin

get...current..time (the..time);
system call(Omainstep I& O&ddbname& *&option&"

us&the~time&u >ternp6"i;
OPEN(data~filel, IN..JILE,Oitemp6*);
WHILE not END_0FF1LE(data..filel) loop
get...line (data...filel, anid, length);
for i in Length+l. .5 loop

an...id(i):= U

end loop;
get...line(data~filel,Name4, length);
for i in Lengthl.1..64 loop

Name4 (i):=
end loop;
auto~jnaill (Name4,an...id);
auto-maill(manager,an~id);
end loop;
CLOSE(data...filel);
systemn_call(Orm temp60);

end Early...Warning;

304

- - SCHEDULE OPERATIONS

procedure Addjissignment (ddbname :string;
option :strinlg;
step...id :string;
desname :string;
the-..time :string;
start :strinlg;
finish :string) is

begin
systemn.call C mainsched "&" "&ddbname&o N&option&m

*&step..id&w N&desname&"
&the..time&" *&start 5 '&finish);

end AddAssignnment;

procedure get current..time(the~time:outl string) is
begin

system..call(odate '+%m/%d/%y %H:%M' > texnpl");
OPEN(data...file, IN...FILE, tenplo);
get (data_file, the...time);
CLOSE(data...file);
systemrcall(orm tenipi");

end get current~time;

-- option = 1
procedure Show_Schedule Cddbname string;

option :string) is
begin

systemk_call(mmainsched 0&0 &ddbnazne&" &option&"
>ddbdisplayn);
end Show_..Schedule;

pro,.ed,-re get..sche&.data..l (ddbname :string;
d-name :string) is

the...time:string(1. .14);
begin

get..current...tine (the~tirne);
system_call Vmainstep 0&0 "&ddbname&o mi &the~time&"

"-&d._name& >ternp3);
end get...sched~data..1;

-option = 5

305

procedure GetSchedule (ddbname: string;
option :string) is

begin
system_call(omainsched 0&0 &ddbname&o *&option);

end Get-Schedule;

--option =4
procedure Delete...Assignxnent (ddbname:string;

option :string;
step..id:string) is

begin
system~call (omainsched *& O&ddbnazne&* "&option&"

sS&step...id);
end Delete_Assignment;

-- option = 3
procedure DeleteSchedu e (ddbnarne string;

option :string) is
begin

system_call(omainsched 0& O&ddbname&l *&option);
end Delete-..Schedule;

- - * DESIGNER POOL OPERATIONS

procedure Add..designer (ddbname: string;
option :striflg;
desname: string;
level :string) is

begin
system-call(mmaindes 0&0 &ddbname&* N&option&n

O&desnarne&* *&level);
end Add...designer;

procedure Show~.designer (ddbname: string;
option :string) is

begin
system_call("Inaindes 0&0 O&ddbname&" "&option&" >

ddbdisplay");
end Show_designer;

procedure put~designers (ddbname:string;
option :string) is

begin
systemncall (maindes 0&0 O&ddbname&* "&option&" >temp2o);

end put...designers;

306

Procedure Delete...designer (ddbname string;
option :strinlg;
desname:string) is

begin
systemn...call(omaindes 0&0 O&ddbname&a 3 *&desname);

end Delete~designer;

procedure Change...exp~level (ddbraamestring;
option :strinlg;
desname: scring;
level :string) is

begin
system-.call (Nmaindes 0&0 O&ddbnamne&" 4 N&desnarne&l

"*&level);
end Change...exp~level;

procedure Change...status (ddbname:string;
option zstring;
desnametstring) is

begin
system-call(omaindes 0&0 O&ddbname&* 5 O&desname);

end Change~status;

-- DISPLAY THE MAIN MENU.
procedure DESIGNER_MENU is

begin
new..line;
set-col(25); put("MAIN MENU"); new...line;
set~co1(25); put(w ------- 0)'; newjline(2);
set...col(5); put(*(l] Add designer");
new-line;
set_col(5); put("f2J Show designers");
newj mne;
set~.col(5); put(M(3] Delete designer");
new_line;
set~col(S); put("(41 Change expertise level");
new..1 me;
set..col(5); put("[5] Return to main menu*);
new-line(3);
set-col(5); put("Eniter the number of your choice

307

end DESIGNER-MENU

Procedure DESIGN~EROPERATIONS is

begin
loop
DES IGNERMENU

get(SELECTOR); skip~line
case SELECTOR is

-- insert a record into database.
when 1 =>

option:="1m;
while answer = lyi or answer=1Y loop

putC"Enter designer's name: 0);
get..line (Name3, Length);
for i in Length+l. .64 loop

Name3(i):= in

end loop;
put(*Enter Expertise Level: 0);/
get..line (Name4, Length);
for i in Length+l. .64 loop

Name4(i:=inin
end loop;
Add_designer(Namel,option,Name3,Mame4);
put (Add more designers [Answer y/nI:m)
get(answer); skip-..line

end loop;
put...designers(Narnel,020);
get-sched-data (Namel,"0O);
get_sched_data_l(NantelName3);
main (0)

when 2 => -- Show designers
option: =02 ;
Show...designer (Namel,otn)

when 3 => -- Delete designer
option:=30;
put("Enter designer'ns name: 0);
get...line (Name3, Length);
for i in Length+1. .64 loop

Name3 (i):= n

end loop;
Showdesigner(Namel,N20);
OPEN(data-file, INFILE, uddbdisplayN);
WHILE not END_OF...FILE(data~file) loop
get-.line(data..file. Name4, lengthl);

308

for i in Lengthl+l. .64 loop
Name4(i):=' '

end loop;
put...line (Name4 (1. .length));
put...line(Name4(45. .48));
if Name4(l. .length)=Name3(l. .length)
then D-status:=N~ame4(4S..48);
end if;
end loop;
CLOSE(data...file);
system-call (rm ddbdisplay");
if D-status(l. .4)= *Busy" then
put..line(*Desiner is busy, Confirmation

Required*);
put(ODo you have to delete him now (answer

yin):)

get (answer); SKiP_...ine;
if answer =Iyl or answer = 'YI then
Delete..designer (Narnel, option, Name3);
system...call(mmainsched O&Namel&I 7

O&Name3);
put...designers(Naxnel, "2");
get~sched...data(Namel,000r);
g.-et~schedý_data_l(Namel,Name3ý);
main (0)
end if;
else

Delete..designer (Namel,option, Name3);
end if;

when 4 => -- Change expertise level
option:=040;
put(aEnter designer's name:)

get-.line (Nazne3, Length);
for i in Length'~l. .64 loop

Name3(i):=' 1

end loop;
put("Enter Expertise Level: ;

get..lime (Name4, Length);
for i in Length+l. .64 loop

Name4(i):= ;

end loop;
Changeexp~level (Namel ,on, Name3 ,Name4);

get sched...data(Name!, "0");
get-sched_data_l(Namel,Name3);
main (0);

309

when 5 =>

-- put(othank you Bye ... Bye");
new~line
exit;

-- exception handling for selector case.
when others =>

put(BAD CHOICE. PLEASE TRY AGAIN");
new~line

end case;
end loop;

end DES IGNER...OPERATIONS;

procedure SAVE_SCHEDULE (HEAD :in LINKl;
dbname :string;
d...vector: -;n vector;
my-list D...LINK)is

CURRENT :LINK1 : HEAD
my..time:string(1..14);
an-.id :string(l..3);
start :string(l..3);
finish :string(l...3);

-- designer :string~l. .64);
my...name :string(l..16);
my~index: natural;

-- length natural;
begin

get...current time(rny..time);
while CURRENT /= null loop

put (an~id,CURRENT.STEP...ID);
put(start,CURRENT.STARTTIME);
put(finish, CURRENT.FINISHTIME);
if CURRENT.DESIGNER...LEVEL = high then

my...index := CURRENT.DESIGNER...NO +
d..vector (1) id._.vector (2);

elsif CURRENT.DESIGNER...LEVEL = medium then
my...index CURRENT.DESIGNER_NO +d.....ector(-.);

else
my...index :=CURRENT.DESIGNER-NO

end if;
FIND...DESIGNER(myjlist, my...index, my~.name);
if CURRENT.STARTTIME = 0
then auto...mail(nrjljiame, anjid);

Change_status(Namel, "5", my...name);
general...update(Namel, "7.an..id, "3");

310

else
generalupdate(Namel,"7*,an_id,02");

end if;
generalupdate(Namel, 8",anid,my_name);
AddAssignment(dbname, l ,anid, my_name,

mytime,start, finish);
CURRENT := CURRENT.NEXT

end loop;
end SAVE_SCHEDULE;

procedure MAIN(indicator :in integer) is

anid :string(l..3);
STEPLIST : LINK null ;
STEPLISTTAIL : LINK null ;
POSITION : LINK
PREVIOUS : LINK null
CURRENT : LINK
templ : LINK;
SCHEDULETAIL : LINK1 := null;
T, k, temp : natural;
S_ID natural; -- stepid
R natural:= 1; -- row
C : natural:= 1; -- column
FOUND :boolean FALSE;
FEASIBLE :boolean := TRUE;
my_SELECTOR : natural := 0;
LEVELS natural := 3 ;
READYLIST: LIST_VECTOR(1..LEVELS):= (others => null);
SCHEDULE : SCHEDULE_=VECTOR(1..5):= (others => null);
PENDINGLIST: link := null;
ASSIGNED : boolean := TRUE;
answer :character :=In';
level_l, level_m, Levelh, INDEX natural;
DESLIST : DLINK;

begin
begin

CREATE_DESIGNER_LIST(DES_LISTlevelI, levelim,
Level-.h);

if level-1 >= levelm and level_l >= Level_h then
INDEX:= level1;

elsif levelm >= levell and level_m >= Level_h then
INDEX:= levelm;

else INDEX:= level-h;
end if;

311

end;

DECLARE
designer...ector :VECTOR~i. .3) (level...l, level_m,

Level..h);
EAT :designer_matrix(l. .LEVELS, 1. .INDEX) :=(others

=> (others => 0));

-- Main program.

begin

__ insert a record into database.

CREATE...AN...INSERT_NEW._STEP (STEP...LIST,
STEP_.LIST...TAIL);

if STEP_LIST /= null then
RESET_FOR_RESCHEDULING (DES...LIST,STEPLIST, EAT,

designer_..vector);

k :=list...size(STEP_LIST);

CURRENT :=ESTEP-LIST;
while CURRENT /= null loop -- initialize ready~lists

if CURRENT.INDEGREE =0 then

t emp:EXPERTI SE_LEVEL IPOS (CURRENT. EXP_LEVEL) 'I;
INSERT_ORDER_STARTý_TIMECREADY_LIST(temp),

CURRENT);

CURRENT =CURRENT. NEXT;
else

CURRENT :=CURRENT.NEXT;
end if;

end loop;
while k /= 0 loop

for i in reverse 1. .LEVELS loop
ASSIGNED :=TRUE;
-- Schedule the steps
while READY...LIST(i) /= null and FEASIBLE and

ASSIGNED loop
STRONGLYFEASIBLE (READY...LIST (i), EAT,

DESIGNER_VECTOR, LEVELS, FEASIBLE);

if FEASIBLE
then
ternpl :=READY_LIST(i);
LEVELMINMtJM(EAT, templ.EXP_LEVEL,LEVELS,

DESIGNER...VECTOR, R,C);
ASSIGN_STEP (READY__.LIST, STEPLIST, EAT,

DESIGNERVECTOR,R,C, i,SCHEDULE(2), ASSIGNED);

if ASSIGNED then

312

k := k - 1;
CHECKINDEGREE_1(templ, STEP_LIST,READYLIST.

EAT(R,C));
end if;

else exit;
end if;
end loop;
if not feasible then exit; end if;
end loop;
if not feasible then exit; end if;
end loop;
SCHEDULERECORDHEADING
PRINTALLSCHEDULERECORDS (SCHEDULE(2),DESLIST,

designer-vector);
if indicator = 1 then

put("Confirmation required to save the schedule in
DDB. Answer(Y/N): ");

get(answer);
if answer ='y' or answer=,Y'
then

Save_Schedule(SCHEDULE(2),NAMEI,
DESIGNERVECTOR, DES_LIST);

end if;
else

SaveSchedule(SCHEDULE(2),NAME1,
DESIGNERVECTOR, DES_LIST);

end if;
POSITION := STEP-LIST;
While POSITION /= null loop

if POSITION.DEADLINECHANGE then
put(an_id, POSITION.STEPID);
system.._call("mainstep O&Namel&" j

"&an-id);
end if;
POSITION := POSITION.NEXT;

end loop;
end if;

end;
end MAIN;

end ECSOPERATIONS;

2. The Scheduler Package

scheduler s.a *

-- Title The scheduler spec package

313

-- Author Salah badr
-- Date 25 May 1993
-- Revised
-- System Suns7
-- Compiler :V dixAda
-- Description

with genericset pkg;
with generic map..pkg;
with TEXT_IO; -- BASICNUMIO;
use TEXT_IO; -- , BASICNUM_IO ;
with test-io_.pkg; use test_io_opkg;

-- generic

package scheduler is

package natset is new genericsetpkg(natural, 5); use
natset;

-- instantiate instances of the generic map pa:kage.
package nat-map is

new generic.mappkg(key => natural, result
natural);

package setmap is
new genericmap._pkg(key => natural, result => set)

type EXPERTISE_LEVEL is (low, medium, high);
package expmap is

new genericmappkg(key => natural, result =>
EXPERTISE_LEIEL);

type STEPRECORD ; -- is limited private;
type LINK is access STEP_RECORD;

type DESIGNER_RECORD; -- is limited private;
type D_LINK is access DESIGNERRECORD;

type SCHEDULE-RECORD; -- is limited private;
type LINK1 is access SCHEDULERECORD;

type STEPRECORD is record
NEXT ,
NEXTREADY,

314

NEXT-PENDING LINK;
STEPID natural;
DEADLINE natural := 0;
PRIORITY natural;
ESTIMATED_DURATION natural;
EARLIEST_STARTTIME: natural :=0;
EXPLEVEL : EXPERTISELEVEL;
SUCCESSORS : set;
PREDECESSORS : set;
INDEGREE : natural;
DEADLINE_CHANGE : BOOLEAN := FALSE;

end record

type DESIGNERRECORD is record
NEXT DLINK;

Dname : string(l..16);
LEVEL EXPERTISE_LEVEL;

end record

type SCHEDULERECORD is record
NEXT : LINK1;
STEP_ID : natural;
START_TIME : natural;
FINISH_ TIME : natural;
DESIGNERNO : natural;

STEPLEVEL : EXPERTISE-LEVEL;
DESIGNER.- LEVEL : EXPERTISE-LEVEL;

end record

type VECTOR is array (POSITIVE range <>) of integer;
type designerMatrix is array (POSITIVE range <>,

POSITIVE range <>)of natural;
type LISTVECTOR is array (POSITIVE range <>) of

link;
type SCHEDULEVECTOR is array (POSITIVE range <>)

of linkl;
DEADLINE1 : nat_map.map;
PRIORITY1 : nat_map.map;
ESTIMATEDDTRATION1 : nat_map.mep;
EARLIEST_START_TIMEl: nat map.map;
EXPLEVEL1 : exp_map.map;
SUCCESSORS1 : set_map.map;
PREDECESSORS1 set._xmap.map;

315

-- Creating new step.
procea'are CREATE_NEWSTEP;

-- Linking a step to the tail of the step list
procedure INSERTNEWSTEP (LIST ,TAIL,

A-RECORD : in out LINK);

-- Creating new step from a file and linking it to
-- step list.
procedure CREATEANDINSERT_NEWSTEP (LIST , TAIL

in out LINK);

procedure CREATEDESIGNERLIST(DLIST in out DLINK;
NO_LOW in out natural;

NOMED in out natural;
NO_HIG in out natural);

procedure INSERT_Drecord(HEAD,&ARECORD:in out D_LINK

procedure FINDDESIGNER(HEAD : in DLINK;
D_INDEX : in natural;
d_name : out string);

procedure se':_successors(LIST : in out LINK);

-- resetting the in-degree of the steps in the step
-- list for rescheduling
procedure RESET_IN_DEGREE(LIST : in out LINK);

-- creating a new schedule record
procedure CREATESCHEDULE_RECORD(

S_ID : in natural;
TIMEl : in natural;
TIME : in natural;
D-NO : in natural;
S-LEVEL : in EXPERTISELEVEL;
D LEVEL : in EXPERTISE_LEVEL);

-- DISPLAY THE MAIN MENU.
pro:edure SCHEDULERMENU;

-- PRINTING A SCHEDULE HEADING LINE BEFORE PRINTING
-- ANY RECORD.

/
316

UL

procedure SCHEDULE_RECORDHEADING;

-- display a record given its position in the list.

procedure DISPLAYSCHEDULE_RECORD(
CURRENT:in LINK1;
my_list : DLINK
d_vector: in vector);

-- print all the records in the SCHEDULE list.
procedure PRINTALLSCHEDULERECORDS(

HEAD : in LINKI;
my_list:D_LINK ;

d vector: in vector);

-- PRINTING A STEP HEADING LINE BEFORE PRINTING ANY
-- RECORD.
procedure STEPRECORDHEADING;

-- display a record given its position in the list.
procedure DISPLAYSTEP_RECORD (CURRENT : in LINK);

-- print all the records in the STEP list.
procedure PRINTALL_STEP_RECORDS (HEAD : in LINK);

-- print all the records in the READY QUEUE.
procedure PRINT_ALLQUEUERECORDS(HEAD.: in LINK);

-- Linking a step to the ready list in order of its
-- deadline.
procedure INSERT_ORDERDEADLINE(

R_QUEUE :in out LINK;
A_RECORD : in LINK);

-- Linking a step to the ready list in order of its
-- start time.
procedure INSERTORDERSTARTTIME(RQUEUE

ARECORD : in out LINK);

-- Linking a step to the pending list in order of
-- its start time.
procedure INSERTPENDING_ORDER_STARTTIME(RQUEUE,

ARECORD : in out LINK);

-- Linking a step to the ready list in order of its
-- (DEADLINE + start time).
procedure INSERT_ORDER_.MIXED(RQUEUE

317

ARECORD : in out LINK);

-- Linking a step to the ready list in order of its
-- laxity.
procedure INSERTORDER_LAXITY(RQUEUE

A_RECORD : in out LINK);
-- Linking a schedule record to the tail of the
-- schedule list
procedure INSERTNEWSCHEDULERECORD(LIST TAIL,

A_RECORD : in out LINK1);

-- Linking a schedule record according to its
-- expertise level
procedure INSERT_ORDEREXPLEVEL(HEAD, ARECORD:

in out LINK1);

-- Linking a schedulerecord to the schedule in
-- order of
-- its start time.
procedure INSERT_ORDER_STARTTIME (HEAD, ARECORD

in out LINK1);

-- Linking a schedule record to the schedule in
-- order of its step id.
procedure INSERT_ORDER_STEPID (HEAD, A_RECORD : in

out LINK1);

procedure LEVEL_MINMUM(MATRIX : in DESIGNERMATRIX;
LEVEL : in EXPERTISELEVEL;
MAXLEVEL : in natural;
ROW_LENGTH : in vector ;
L, J : in out natural);

function ROW_MINMUM(MATRIX in DESIGNER.MIATRIX;
LEVEL : in EXPERTISE_LEVEL;

ROW-LENGTH : in vector)return
natural

-- Search for target step. Return the position and
-- previous if found
-- Record not found 0 if not found.
procedure FINDSTEP (HEAD : in LINK;

S_ID : in natural;
POSITION : in out LINK;
PREVIOUS : in out LINK;

318

FOUND in out boolean);

-- Delete a step from step list.
procedure DELETE_FROMSTEPLIST (HEAD: in out LINK;

POSITION in LINK;
PREVIOUS : in LINK);

-- Delete a step from pending list
procedure DELETEFROMPENDINGLIST (HEAD : in out LINK;

POSITION : in LINK;
PREVIOUS : in LINK);

-- Delete a step from schedule.
procedure DELETE_FROM_SCHEDULE (HEAD in out LINK1;

POSITION in LINK1;
PREVIOUS : in LINK1);

-- Delete a step found by search and relink step
-- list.
procedure DELETE_FROMREADYQUEUE (HEAD: in out

LINK);

-- Decrementing the indegree of the successors of a step
procedure DECREMENT_INDEGREE (STEP, LIST: in out LINK;

finish_t : in natural);

function listsize(LIST :in LINK) return natural;

-- checking the indegree of the successors of the
-- assigned step
-- This works with deadline heuristic (mixed and
-- laxity too)
procedure CHECKINDEGREE

STEP, RQUEUE , LIST : in out LINK;
finisht : in natural);

-- checking the indegree of the successors of the
-- assigned step
-- This works with start time heuristic.

procedure CHECKINDEGREE_1 (STEP, LIST : in out LINK;
R_QUEUE : in out LIST_VECTOR;

finish t : in natural);

procedure CHECKIN_DEGREE_2 (STEP, LIST : in out LINK;
RQUEUE : in out LIST._VECTOR;

319

finish-t in natural);

-- checking the pending list for ready steps of a
-- certainlevel and insert them into the
-- corresponding readylist according to their
-- deadlines
procedure GETREADYSTEPS(t, k in natural ;

LIST : in out LINK;
RQUEUE : in out LISTVECTOR);

-- checking the pending list for ready steps of a
-- certain level and insert them into the
-- corresponding readylist
-- according to their (deadlines + start times).
procedure GET_READYSTEPS_1(t, k in natural

LIST, RQUEUE in out LINK);

-- checking the pending list for ready steps of a
-- certain level and insert them into the
-- corresponding readylist according to their
-- LAXITY.
procedure GETREADYSTEPS_2(t, k : in natural

LIST, R.QUEUE : in out LINK);

-- get the top steps in the ready list and
-- insert them into the corresponding readyjlist
-- according to their deadlines

procedure GETREADY_STEPS (LIST :in out LINK;

RQUEUE in out LISTVECTOR);

-- get the top steps in the ready list and
-- insert them into the corresponding readyjlist
-- according to their (deadlines + start times).

procedure GET_READY_STEPS_1 (LIST :in out LINK;
RQUEUE : in out LISTVECTOR);

-- get the top steps in the ready list and
-- insert them into the corresponding ready list
-- according to their Laxity.

procedure GET_READY_STEPS_2 (LIST :in out LINK;
R-QUEUE in out LIST_VECTOR);

procedure SUGGEST_DEADLINESLIP(step : in out link;
value :in natural);

-- checking the feasibility of the schedule with
-- each step in the ready queue

320

/
/

procedure STRONGLYFEASIBLE(RQUEUE in LINK;
MATRIX in DESIGNER_MATRIX;

D_VECTOR : in vector;
MAX_LEVEL : in natural;

FEASIBLE in out boolean);

-- Assign a step to a designer according to its deadline
-- and its expertise level
procedure ASSIGNSTEP(RQUEUE in out LIST.YECTOR;

LIST in out LINK;
MATRIX in out DESIGNER_MATRIX;

ROW._LENGTH : in vector;
M,N in out natural;
L in natural;
SCH in out LINKI;
done out boolean);

-- reset the step list and the schedule for
-- incrementing the schedule
-- with new steps at certain time
procedure RESET_FORRESCHEDULING(

dlist :in out DLINK;
LIST in out LINK;

MATRIX in out DESIGNERMATRIX;
d_vector in vector);

procedure FIND_DESIGNERPOSITION(HEAD in D.LINK;
D_INDEX out natural;
d_name in string);

end scheduler;

scheduler* b*a *

-- Title : Scheduler package body
-- Author : Salah badr
-- Date : 25 May 1993
-- Revised
-- System : Suns7
-- Compiler : VerdixAda
-- Description

with UNCHECKED-DEALLOCATION;

321

I

package body scheduler is

package natio is new integerio(natural); use nat-io;
procedure putset is new generic..put;
procedure getset is new generic-input;
procedure getfset is new generic-fileinput;
procedure FREE is new
UNCHECKED..DEALLOCATION(STEPRECORD, LINK);
procedure FREE1 is new
UNCHECKEDDEALLOCATION(SCHEDULE_.RECORD0 LINK1);

package enuio is new
text_io.ENUMERATION._IO(EXPERTISELEVEL);

STEP_ID : natural :=l;
NEW_RECORD : LINK;-- new step record
NE!_S_RECORD : LINK1;-- new schedule record
MY_RECORD : DLINK;-- new designer record
-- logical file definitions
datatile,datafilel : FILE_TYPE;
input : string(l..10);
-- physical file name that include step data
E_level_error :exception;

-- Creating new step for standard input.
procedure CREATE_NEW_STEP is

begin
NEW_RECORD := new STEP_RECORD
-- assign values to record fields.
NEW_RECORD.STEPID := STEPID;
put-line(OPlease Enter DEADLINE 0);
get(NEWRECORD.DEADLINE);
put-line(OPlease Enter PRIORITY u);

get(NEWRECORD.PRIORITY);
put-line(*Please Enter ESTIMATED_DURATION ');

get(NEW_RECORD.ESTIMATED_DURATION);
put line(,Please Enter EARLIEST START TIME ");

get(NEW_RECORD.EARLIESTSTARTTIME);
putline("Please Enter PREDECESSORS N);
getset(NEW_RECORD.PREDECESSORS);
putline("Please Enter SUCCESSORS 0);
get.set(NEW_RECORD.SUCCESSORS);

put-line("Please Enter EXPERTISE LEVEL REQUIRED
"U);

enu_io.get(NEWRECORD.EXPLEVEL);

322

-- PREDECESSORS := NEW__RECORD.PREDECESSORS;
NEW-RECORD. IN-DEGREE-

size (NEW...RECORD. PREDECESSORS);
skip~j me;

end CREATE_.NEWSTEP;

-- Linking a step to the tail of the step list
procedure INSERT_NEW-STEP (LIST £TAIL,

ARECORD in out LINK i s

begin
if LIST = null

then ARECORD.NEXT := LIST;
LIST := A...RECORD
else

TAIL.NEXT =ARECORD

end if;
TAIL := A_.RECORD

end INSERTNEWSTEP;

-- Creating new step from a file.
procedure CREATE_AND._INSERTNEWqýSTEP(LISTI TAIL:

in out LINK)is
begin

OPEN(data...file, IN-..FILE, "temps");
WHILE not END...OFFILE(data...file) loop
NEW_ýRECORD := new STEP_RECORD;
-- assign values to record fields.
get(data...file,NEW..RECORD.STEPID)
get (data~file,NEW..RECORD.DEADLINE)
get(data...file, NEW_RECORD.PRIORITY)
get (data...f i le, NEW_RECORD. ESTIMATED_DURATION)
getf 7 set Cdata..file, NEWRECORD. PREDECESSORS);
eriu...io.get (data...file, NEW_RECORD.EXPLEVEL);
get (data..f ile,NEW._RECORD.IN_..DEGREE);
INSERT...NEW_STEP(LIST, TAIL,NEW_RECORD);

end loop;
CLOSE (data-file);

set..successors (LIST);
except ion

when DATA...ERROR =>
put...line(*Step is not in approved state");

when constraint-error =>

put...line(*Step is not in approved state");
when others =>

323

null;
end CREATE_AND_INSERT.,NEW..STEP;

procedure CREATE...DESIGNER...LIST(D...LIST :in out
D-LINK;

NO-LOW :in out natural;
NOMED :in out natural;

NO...HIG :in out natural)is
-- Length :integer;

begin
NOLOW 0;
NO-N.ED 0;
NO_ýHIG 0;
OPEN(data-fulel, IN...FILE, "temp2");
WHILE not END_OF_FILE(data~filel) loop

MY..RECORD :=new DESIGNERRECORD
-- assign values to record fields.
get (data-filel,MYRECORD.D_.name);

-- for i in Length+l. .20 loop
MYRECORD.D-name(i):=';

-- end loop;
-- ~put(MY_..RECORD.D_name);

enu_io.get(data_filel,MY...RECORD.LEVEL)
skip...line(data_filel);

- - enu~io .put (MYRECORD. LEVEL);
-- newjline;

if MYRECORD.LEVEL = low then NO_.LOW:=NO...LOW +1;
elsif MY_RECORD.LEVEL =medium then NO_MED.-

NO_MED +1;
else NO...HIG :=NQ.HIG + 1;
end if;

ins ertD~record (D_.LIST, MYRECORD);
end loop;
CLOSE (data-..filel);

end CREATE_DESIGNER...LIST;

-- Linking a deigner record according to its
-- expertise level

procedure INSERT...D..record (HEAD , A...RECORD :in out
D_LINK) is

CURRENT :D_LINK HEAD
PREVIOUS :D...LINK null;
LARGER_FOUND :BOOLEAN := FALSE
begin
while CURRENT /= null and not LARGER_FOUND loop

324

if CURRENT.izEVEL > A.RECORD.LEVEL then
LARGER-FOUND := TRUE

else
PREVIOUS = CURRENJT
CURRENT CURRENT.NEXT

end if ;
end loop;
A_RECORD.NEXT := CURRENT
if PREVIOUS null then

HEAD := ARECORD
else

PREVIOUS.NEXT := ARECORD
end if

end INSERT_D.record;

-- Search for target step. Return the position and
-- previous if found,
-- Record not found 0 if not found.

procedure FINDDESIGNER(HEAD : in 1)_LINK;
D_INDEX : in natural;
d_name : out string) is

POSITION D_LINK := HEAD
K : natural :=l;

begin
while POSITION /= null and K /= D_INDEX loop

POSITION := POSITION.NEXT
k := k+l;

end loop ;
d_name := POSITION.D.name;

end FIND_DESIGNER ;

procedure setsuccessors(LIST : in out LINK) is
CURRENT : LINK 7= LIST;
currentl: LINK;
begin

while CURRENT /= null loop
if size(CURRENT.PREDECESSORS) /= 0

then
currentl:=LIST;

while currentl /= null loop
if member(currentl.stepid,

CURRENT.PREDECESSORS)
then add(CURRENT.STEPID,

currentl.successors);
end if;

325

currenti :=currentl.next;
end loop;

end if;
CURRENT :=CURRENT.NEXT;

end loop;
end set-successors;

-- resetting the in..degree of the steps in the step list
- - for rescheduling
procedure RESETý_IN_DEGREE(LIST :in out LINK) is

CURRENT :LINK :=LIST;
begin

while CURRENT /= null loop
CURRENT.IN_DEGREE :

size (CURRENT. PREDECESSORS);
CURRENT :=CURRENT.NEXT;

end loop;
end RESETIN_DEGREE;

-- creating a new schedule record
procedure CREATE_SCHEDULE_RECORD

SID in natural;
TIME1 in natural;
TIME2 in natural;
D_NO :in natural;
S_ýLEVEL: in EXPERTISELEVEL;
D._LEVEL:in EXPERTISE_LEVEL) is

bgnNEW,_.SRECORD :=new SCHEDULE_RECORD
NEW.SRECORD.STEPID := SID;
NEWSRECORD.START!_TIME TIMEl;
NEW_S_RECORD.FINISH_TIME :=TIME2;

NEWS..RECORD.DESIGNERNO := NO
NEW,..S..RECORD.STEP_LEVEL :=S-LEVEL;
NEW._S_RECORD.DESIGNER-LEVEL := DLEVEL;

end CREATE_SCHEDULE...RECORD;

-- PRINTING A SCHEDULE HEADING LINE BEFORE PRINTING
-~ANY RECORD.

procedure SCHEDULE...RECORDHEADING is
begin

put(NSTEP.JID S...LEVEL D...NAME
START_TIME FINISH_TIME");

newl..j me;

326

put(O - - - - -- - - - - - ----

---- - - ---- --- - U);

new..lime;
end SCHEDULE...RECORD...HEADING

-- display a record given its position in the list.
procedure DISPLAY..SCHEDULERECORD(

CURRENT ia LINIKl;
myjlist D...LINK;
d...yector: in vector)is

my index :natural;
rny..name :string(l..16);
begin

SET-COL(4);
t-est~io..pkg.put (CURRENT.STEP...ID);

SET_..COL(ll);
enujio.put (CURRENT.STEP...LEVEL);
SETCOL(21);

if CURRENT.DESIGNER_LEVEL = high then
my...index :=CURRENT.DESIGNER.J40 +

d~vector (1) d..vector (2);
elsif CURRENT.DESIGNER_LEVEL = medium then

myjindex :=CURRENT. DESIGNER_NO + d..yector (1);
else
my_index := CURRENT.DESIGNER_.NO

end if;
FINDDESIGNER(my~list, my...index, my...name);

put (my....name);
SET-.COL(37);
test..io...pkg.put (CURRENT.START...TIME);
SET-.COL(48);
testjio..pkg .put (CURRENT. FINISH._TIME);
new..line;

end DISPLAY_SCHEDULE_..RECORD;

-- print all the records in the SCHEDULE list.
procedure PRINTý_ALLSCHEDULERECORDS(

HEAD :in LINKI;
Myjlist :DLINK;
d~vector: in vector) is

CURRENT :LINKl := HEAD
begin

while CURRENT /= null loop
rlISPLAY...SCHEDULE_RECORD (CURRENT. my~list,

d_vector);
CURRENT :=CURRENT.NEXT

327

end loop;
end PRINTALLSCHEDULE_RECORDS

-- PRINTING A STEP HEADING LINE BEFORE PRINTING Wt'i

-- RECORD.

procedure STEP_RECORDHEADING is
begin
put(OSTEP-ID DEADLINE PRIORITY PREDECE SUCCESS

E_.LEVEL INDEGREE");
new~lime;

-- -- -- -- - -- -- -- - ------ - - - - -- - - - - -- -- - -

newjline;
end STEPRECORDHEADING

-- display a record given its position in the list.
procedure DISPLAY_STEP_RECORD (CURRENT :in LINK)is

tempi natural;

begin SETCOLC4);

test_io-pkg.put(CURRENT.STEP__JD);
SETCOL(12);
test_io..pkg.put(CURRENT.DEADLINE);
SET_COL(23);
test~iQ..pkg.put (CURRENT.PRIORITY);
SET_COL(31);
put...set (CURRENT.PREDECESSORS);
SETCOL(41);
put...set (CURRENT.SUCCESSORS);
SETSCOL(4 9);
enu_io.put(CURRENT.z.AP_LEVEL);
SET_COL(6l);
test...io...pkg.put (CURRENT.IN_.DEGREE);

newý_line;
end DISPLAYSTEPRECORD;

-- print all the records in the STEP list.
procedure PRINT_ALL_STEP_RECORDS (HEAD :in LINK)is
CURRENT :LINK :=dEAD
begin

while CURRENT /= null loop
DISPLAYý_STEP_RECORD (CURRENT)
CURRENT :=CURRENT.NEXT

end loop;
end PRINT_ALL_STEP_RECORDS

328

-- print all the records in the READY QUEUE.
procedure PRINTALLQUEUERECORDS(HEAD:in LINK) is

CURRENT : LINK := HEAD
begin

while CURRENT /= null loop
DISPLAYSTEPRECORD (CURRENT) ;
CURRENT := CURRENT.NEXTREADY ;

end loop;
end PRINT_ALLQUEUERECORDS

-- DISPLAY THE MAIN MENU.
procedure SCHEDULER_MENU is

begin
newline;

setcol(25); put(OMAIN MENU"); new_line;
setcol(25); put(" ----------u); new_line(2);
setcol(10); put("[l] schedule steps according

to their deadlines*);
new_line;
setcol(10); put(0[2] schedule steps according

to their start time");
new-line;
set-col(10); put(0[3] schedule steps according

to (deadline + start time)*);
new_line;
setcol(10); put("[4] schedule steps according

to their laxity ");

new_line;
set_col(10); put("[5] Print schedule*);
new_line;
setcol(10); put(N[6] Print ready queue*);
new_line;
setcol(10); put("[7] Print a particular step*);
newline;
setcol(1O); put(1[81 Print step list");
new_line;
set-col(10); put(0[9] Quit*); newline(3);

setcol(10); put("Enter the number of your choice

end SCHEDULER_MENU;

-- Linking a step to the ready list in order of its
-- deadline.
procedure INSERTORDERDEADLINE(

329

R_QUEUE : in out LINK;
A-RECORD in LINK) is

CURRENT : LINK R_QUEUE
PREVIOUS : LINK null ;
LARGER_FOUND : BOOLEAN := FALS;
begin

while CURRENT /= null and not LARGER_FOUND loop
if CURRENT.DEADLINE > A_RECORD.DEADLINE then

LARGER_FOUND := TRUE
else

PREVIOUS CURRENT
CURRENT = CURRENT. NEXTREADY ;

end if ;
end loop;
ARECORD. NEXTREADY := CURRENT ;
if PREVIOUS = null then

R_QUEUE A= ARECORD
else

PREVIOUS.NEXT_READY :=A-RECORD
end if ;

end INSERTORDER_DEADLINE;

-- Linking a step to the ready list in order of its
-- start time.
procedure INSERT_ORDERSTARTTIME (RQUEUE,

A_RECORD in out LINK) is
CURRENT : LINK R-R_QUEUE
PREVIOUS : LINK := null ;
LARGERFOUND : BOOLEAN := FALSE
begin

while CURRENT /= null and not LARGERFOUND loop
if CURRENT.EARLIEST_STARTTIME >

A_RECORD.EARLIEST-STARTTIME
then

LARGER-FOUND := TRUE ;

else
PREVIOUS := CURRENT ;
CURRENT = CURRENT. NEXTREADY

end if ;
end loop;
ARECORD. NEXTREADY := CURRENT
if PREVIOUS = null then

RQUEUE := ARECORD
else

330

PREVIOUS.NEXTREADY := ARECORD
end if ;

end INSERTORDERSTARTTIME;

-- Linking a step to the ready list in order of its
-- start time.

procedure INSERTPENDINGORDER_START_TIME(R_QUEUE,
A_RECORD : in out LINK) is

CURRENT : LINK R.:= .QUEUE
PREVIOUS : LINK null ;
LARGERFOUND : BOOLEAN := FALSE
begin

while CURRENT /= null and not LARGER-FOUND loop
if CURRENT.EARLIESTSTARTTIME >

ARECORD. EARLIESTSTARTTIME then
LARGERFOUND := TRUE

else
PREVIOUS : CURRENT
CURRENT = CURRENT. NEXTPENDING

end if
end loop;
A_RECORD.NEXTPENDING := CURRENT
if PREVIOUS = null then

R_QUEUE = A_RECORD
else

PREVIOUS.NEXT_PENDING := ARECORD
end if ;

end INSERT_PENDING_ORDERSTARTTIME;

-- Linking a step to the ready list in order of its
-- (DEADLINE + start time).
procedure INSERT_ORDERJMIXED(RQUEUE, A_RECORD : in

out LINK) is
CURRENT : LINK : R.QUEUE ;
PREVIOUS : LINK :--null ;
LARGER-FOUND : BOOLEAN := FALSE ;
begin

while CURRENT /= null and not LARGER_FOUND loop
if (CURRENT.EARLIEST_STARTTIME +

CURRENT. DEADLTINE)>
(A_RECORD. EARLIESTSTARTTIME +
A.RECORD. DEADLINE)

then LARGER-F.J;NND := TRUE
else

331

PREVIOUS CURRENT
CURRENT CURRENT.NEXTREADY

end if ;
end loop;
A_RECORD.NEXTREADY := CURRENT
if PREVIOUS = null then

R_QUEUE ARECORD
else

PREVIOUS.NEXTREADY = A-RECORD
end if ;

end INSERT_ORDER_MIXED;

-- Linking a step to the ready list in order of its
-- laxity (deadline - (est + duration)).

procedure INSERTORDER_LAXITY(RQUEUE, ARECORD
in out LINK) is

CURRENT : LINK R..RQUEUE
PREVIOUS : LINK := null ;
LARGERFOUND : BOOLEAN := FALSE
begin

while CURRENT /= null and not LARGER_FOUND loop
if (CURRENT.DEADLINE -

(CURRENT. EARLIEST_STARTTIME + CURRENT. ESTIMATEDDURATION))
> (ARECORD.DEADLINE -(A_RECORD.EARLIESTSTART_TIME +
ARECORD. ESTIMATED_DURATION))

then LARGERFOUND := TRUE
else

PREVIOUS = CURRENT ;

CURRENT = CURRENT. NEXTREADY
end if

end loop;
A_RECORD. NEXT_READY := CURRENT ;

if PREVIOUS = null then
RQUEUE A_RECORD ;

else
PREVIOUSS.NEXTREADY = ARECORD ;

end if ;
end INSERT_ORDER_LAXITY;

-- Linking a schedule record to the tail of the
-- schedule list
procedure INSERTNEWSCHEDULERECORD(LIST ,TAIL,

A.RECORD : in out LINK1) is
begin

332

if LIST = null
then A_RECORD.NEXT := LIST;

LIST := ARECORD
else

TAIL.NEXT := A_RECORD
end if;

TAIL := ARECORD
end INSERTNEW_SCHEDULE_.RECORD;

-- Linking a schedule record according to its
-- expertise level
procedure INSERTORDER_EXP_LEVEL (HEAD ARECORD

in out LINK1) is
CURRENT : LINK1 HEAD ;
PREVIOUS : LINK1 null;
LARGERFOUND : BOOLEAN := FALSE
begin

while CURRENT /= null and not LARGERFOUND loop
if CURRENT.DESIGNERLEVEL >

A.RECORD.DESIGNERLEVEL then
LARGER-FOUND := TRUE ;

else
PREVIOUS := CURRENT
CURRENT CURRENT.NEXT

end if ;
end loop;
NRECORD.NEXT := CURRENT

A. PREVIOUS = null then
HEAD = A-RECORD ;

else
PREVIOUS.NEXT := ARECORD

end if ;
end INSERT_ORDEREXP_LEVEL;

-- Linking a schedulerecord to the schedule in
-- order of its start time.
procedure INSERTORDERSTARTTIME (HEAD , A_RECORD

: in out LINK1) is
CURRENT : LINK1 := HEAD
PREVIOUS : LINKI null;
LARGER_FOUND : BOOLEAN := FALSE
begin
while CURRENT /= null and not LARGER_FOUND loop

if CURRENT.START_TIME >= A_RECORD.START_TIME then
LARGER_FOUND := TRUE

else

333

PREVIOUS = CURRENT
CURRENT := CURRENT.NEXT

end if
end loop;
A_RECORD.NEXT := CURRENT
if PREVIOUS = null then

HEAD := A-RECORD
else

PREVIOUS.NEXT := ARECORD
end if ;

end INSERTORDER_START_TIME;

-- Linking a schedule_record to the schedule in

-- order of its step id.
procedure INSERTORDERSTEP_ID (HEAD , ARECORD

: in out LINK1) is
CURRENT : LINK1 HEAD
PREVIOUS : LINKl null;
LARGER_FOUND : BOOLEAN := FALSE
begin

while CURRENT /= null and not LARGERFOUND loop
if CURRENT.STEP_ID >= A_RECORD.STEPID then

LARGERFOUND := TRUE
else

PREVIOUS := CURRENT
CURRENT := CURRENT.NEXT

end if ;
end loop;
ARECORD.NEXT := CURRENT
if PREVIOUS = null then

HEAD := A.RECORD
else

PREVIOUS.NEXT := A.RECORD
end if ;

end INSERT_ORDER_STEP_ID;

procedure LEVEL_MINMUM (MATRIX in DESIGNER_MATRIX;
LEVEL in EXPERTISELEVEL;

MAXLEVEL : in natural;
ROW_LENGTH : in vector ;

L, J in out natural) is
MIN : natural;
temp natural := EXPERTISE_LEVEL'POS(LEVEL) + 1;
begin

L temp;

334

I
J 1= ;

MIN := 1000; -- MATRIX (temp, 1);
for k IN temp..MAXLEVEL loop

if ROW_LENGTH (k) /= 0 then
for i IN 1..ROWLENGTH (k) loop

if MIN > MATRIX(k,i) then
MIN := MATRIX k, i)

L k;

end if;
end loop;
end if;

end loop;
end LEVEL_MINMUM;

function ROW_MINMUM (MATRIX : in DESIGNER_MATRIX;
LEVEL : in EXPERTISE-LEVEL;
ROWLENGTH : in vector) return

natural is
temp natural := EXPERTISE-LEVEL'POS(LEVEL) + 1;
MIN, 3 natural;
begin

J:= 1;
MIN := MATRIX(temp, J);
for i in 1..ROW._LENGTH(temp) loop
if MATRIX(temp,i) > MIN then

MIN MATRIX (temp, i) ;

end if;
end loop;
if ROWLENGTH(temp)=0 then
return 1000;

else
return J;

end if;
end ROWMINMUM;

-- Search for target step. Return the position and
-- previous if found,
-- Record not found " if not found.

procedure FINDSTEP (HEAD in LINK;
SID in natural;
POSITION in out LINK;
PREVIOUS in out LINK;
FOUND in out boolean) is

335

begin
POSITION := HEAD
PREVIOUS := null
FOUND := FALSE;
while POSITION /= null and not FOUND loop
if POSITION.STEPID = SID then

FOUND := TRUE
else

PREVIOUS POSITION
POSITION := POSITION.NEXT

end if ;
end loop
if FOUND z FALSE then

put(OSTEP NOT FOUND u);

end if ;
end FINDSTEP

-- Delete the step found by search and relinks the step list.
procedure DELETE_FROM_STEP_LIST (HEAD : in out LINK;

POSITION : in LINK;
PREVIOUS : in LINK) is

begin
if HEAD = POSITION then

HEAD := HEAD.NEXT;
else

PREVIOUS.NEXT := POSITION.NEXT;
end if;

end DELETEFROMSTEP_LIST;

-- Delete the step found by search and relinks the step list.
procedure DELETEFROMPENDINGLIST (HEAD : in out LINK;

POSITION : in LINK;
PREVIOUS in LINK) is

begin
if HEAD = POSITION then

HEAD := HEAD.NEXT_PENDING;
else

PREVIOUS.NEXTPENDING :s

POSITION.NEXT_PENDING;
end if;

end DELETE_FROM_PENDINGJLIST;

336

-- Delete a step from the schedule.
procedure DELETEFROM_SCHEDULE (HEAD in out LINK1;

POSITION : in LINKI;
PREVIOUS : in LINK1) is

begin
if HEAD = POSITION then

HEAD := HEAD.NEXT;
else

PREVIOUS.NEXT := POSITION.NEXT;
end if;

end DELETEFROM_SCHEDULE;

-- Delete a step from the head of the ready list.
procedure DELETE_FnOMREADYQUEUE (HEAD:

in out LINK) is

begin
HEAD := HEAD.NEX7_READY;

end DELETE_FROMREADYQUEUE;

-- Decrementing the indegree of the successors of
-- a step and adjusting its earliest start time.

procedure DECREMENT_IN_DEGREE (STEP, LIST :in out LINK;
finisht :in natural) is

POSITION LINK := LIST;
t : set STEP.SUCCESSORS;
k : natural ;

kl natural := 0;
FOUND : boolean := FALSE;
begin

if size(t) /= 0 then
while POSITION /= null and kl <= size(t) loop

k := POSITION.STEPID;
if member(k, t) then
if POSITION.EARLIESTSTART TIME < finish_t

then POSITION. EARLIEST_STARTTIME := finish_t;
end if;

POSITION.IN._DEGREE := POSITION.INDEGREE - 1;

k1 := k1 + 1;
end if;
POSITION := POSITION.NEXT;

337

end loop;
end if;

end DECREMENTINDEGREE;

function list_size(LIST in LINK)return natural is
current link LIST;
K natural := 0;
begin

while current /= null loop
K := K + 1;
current := current.NEXT;

end loop;
return K;

end list-size;

-- checking the in_degree of the successors of the
-- Tassigned step this works with deadline
-- heuristic.

procedure CHECKINDEGREE(
STEP, RQUEUE , LIST in out LINK;
finish-t in natural) is

POSITION : LINK LIST;
PREVIOUS : LINK null
t : set := STEP.SUCCESSORS;
tl: set;
k : natural;
FOUND : boolean := FALSE;
begin

if size(t) /= 0 then
while POSITION /= null loop

k := POSITION.STEPID;
if member(k, t) then
if POSITION.EARLIESTSTARTTIME <

finish-t
then POSITION.EARLIEST_START_TIME

finish.t;
end if;

POSITION.INDEGREE := POSITION.INDEGREE 1
if POSITION.INDEGREE = 0
then

INSERTPENDING_ORDERSTART._TIME (R_QUEUE,
POSITION);

POSITION := POSITION.NEXT;
else

338

PREVIOUS := POSITION;
POSITION := POSITION.NEXT,

end if;
else

PREVIOUS := POSITION;
POSITION := POSITION.NEXT;

end if;
end loop;

end if;
end CHECKINDEGREE;

-- checking the indegree of the successors of the
-- assigned step
-- This works with start time heuristic.

procedure CHECKINDEGREEI (STEP, LIST : in out LINK;
R_QUEUE : in out LISTVECTOR;

finisht : in natural) is
POSITION : LINK := LIST;
PREVIOUS : LINK := null
t : set := STEP.SUCCESSORS;
tl: set;
k, kl : natural;
FOUND : boolean := FALSE;
begin

if size(t) /= 0 then
while POSITION /a null loop

k := POSITION.STEPID;
if member(k, t) then

if POSITION.EARLIEST_STARTTIME <
finish-t

then POSITION.EARLIESTSTARTTIME
:= finish t;

end if;
POSITION.INDEGREE := POSITION.INDEGREE - 1;

if POSITION.INDEGREE = 0
then

kl :=
EXPERTISELEVEL'POS(POSITION.EXPLEVEL) + 1;

INSERT_ORDERSTARTTIME (RQUEUE(kl), POSITION);
POSITION := POSITION.NEXT;

else
PREVIOUS := POSITION;
POSITION := POSITION.NEXT;

end if;

339

else
PREVIOUS POSITION;
POSITION POSITION.NEXT;

end if;
end loop;

end if;
end CHECKIN_.DEGREEl;

-- checking the indegree of the successors of the
-- assigned step. This works with start time heuristic.

procedure CHECKINDEGREE_2 (STEP, LIST : in out LINK;
RQUEUE in out LISTVECTOR;

finish_t in natural) is
POSITION : LINK LIST;
PREVIOUS : LINK := null;
t : set := STEP.SUCCESSORS;
tl: set;
k, kl : natural;
FOUND : boolean := FALSE;
begin

if size(t) /= 0 then
while POSITION /= null loop

k := POSITION.STEP_ID;
if member(k, t) then

if POSITION.EARLIESTSTARTTIME <
finish_t

then POSITION.EARLIESTSTART..TIME
:= finish t;

end if;
POSITION.IN_DEGREE := POSITION.IN_DEGREE - 1;

if POSITION.INDEGREE = 0
then

k1 := EXPERTISE-LEVEL'POS(POSITION.EXPLEVEL)
+ 1;

INSERT_ORDERSTARTTIME (RQUEUE(kl), POSITION);
POSITION := POSITION.NEXT;

else
PREVIOUS :- POSITION;
POSITION :z POSITION.NEXT;

end if;
else

PREVIOUS := POSITION;
POSITION := POSITION.NEXT;

end if;

340

end loop;
end if;

end CHECKIN_DEGREE_2;

-- checking the pending list for ready steps of a
-- certain level and insert them into the
-- corresponding ready_list according to their
-- deadlines

procedure GET_READYSTEPS
t ,k in natural;

LIST in out LINK;
R QUEUE in out LIST_VECTOR) is

POSITION : LINK LIST;
PREVIOUS : LINK null
temp natural;
FOUND boolean FALSE;
begin

while POSITION /= null loop
temp := EXPERTISELEVEL'POS(POSiTION.EXP_.LEVEL)

+ 1;

if POSITION.EARLIEST_START_TIME <= t and temp
>= k

then
INSERTORDERDEADLINE (RQUEUE(temp),POSITION);

DELETEFROMPENDINGLIST(LIST, POSITION,
PREVIOUS);

POSITION := POSITION.NEXTPENDING;
else
PREVIOUS POSITION;
POSITION := POSITION.NEXTPENDING;
end if;
end loop.

end GETREADYSTEPS;

-- checking the pending list for ready steps of a
-- certain level and insert them into the
-- corresponling readylist according to
-- their (deadlines + start times).

procedure GETREADYSTEPSl (t ,k in natural;
LIST, R_QUEUE in out LINK) is

/ POSITION LINK LIST;
PREVIOUS LINK := null
temp natural;

341

FOUND boolean FALSE;
begin
while POSITION 1= null loop

temp:= EXPERTISE_LEVEL'POS(POSITION.EXPLEVEL)÷'.;
if POSITION.EARLIEST_STARTTIME <= t and temp = k
then

INSERTORDER_MIXED (R_QUEUE, POSITION);
DELETEFROM_PENDING_LIST(LIST, POSITION,

PREVIOUS);
POSITION POSITION.NEXT_PENDING;

else
PREVIOUS := POSITION;
POSITION := POSITION.NEXTPENDING;

end if;
end loop;
end GETREADYSTEPSl;

-- checking the pending list for ready steps of a
-- certainlevel and insert them into the
-- corresponding readylist dccording to their
-- LAXITY.

procedure GET_READY_STEPS_2 (t ,k : in natural;
LIST, RQUEUE : in out LINK) is

POSITION : LINK LIST;
PREVIOUS : LINK := null
temp natural;
FOUND boolean FALSE;
begin

while POSITION /= null loop
temp:=
EXPERTISELEVEL POS(POSITION.EXPLEVEL) + 1;

if POSITION.EARLIESTSTARTTIME <= t and temp = k
then

INSERTORDER_LAXITY (RQUEUE, POSITION);
DELETE_FROMPENDING_LIST(LIST, POSITION,

PREVIOUS);
POSITION := POSITION.NEXT_LENDING;

else
PREVIOUS := POSITION;
POSITION := POSITION.NEXTPENDING;

end if;
end loop;
end GETREADYSTEPS_2;

342

-- get the top steps in the ready list and
-- insert them into the corresponding ready_list
-- according to their deadlines

procedure GET_READYSTEPS (LIST :in out LINK;
RQUEUE :in out

LIST_VECTOR) is

POSITION LINK LIST;
PREVIOUS LINK null;
temp natural;
templ natural;
begin

if POSITION /= null then
temp := POSITIOiN.EARLIEST_START_TIME;

end if;
while POSITION /= null and then

POSITION.EARLIEST STARTTIME = temp loop
templ :=
EXPERTISE_LEVEL POS(POSITION.EXP_LEVEL)

+1;
INSERT_ORDERSTART_TIME (RQUEUE(templ),

POSITION);

DELETE_FROMPENDING_LIST(LIST, POSITION,

PREVIOUS);

POSITION := POSITION.NEXTPENDING;
end loop;

end GET_READY_STEPS;
__******tt***************************t********************t**

-- get the top steps in the ready list and
-- insert them into the corresponding ready_list
-- according to their (deadlines + start times).

procedure GETREADYSTEPSI (LIST :in out LINK;
RQUEUE : in out LIST_VECTOR) is

POSITTON : LINK := LIST;
PREVIOUS : LINK null:

temp natural;
templ natural;
begin

if POSITION /= null then
temp : POSITION.EARLIESTSTARTTIME

end if;

343

I
while POSITION /= null and then

POSITION.EARLIESTSTART_TIME = temp loop
templ :=
EXPERTISELEVEL POS(POSITION.EXP_LEVEL)

+ 1;
INSERT._ORDERMIXED (RQUEUE(templ),

POSITION);
DELETEFROM..PENDING_LIST(LIST, POSITION,

PREVIOUS);
POSITION := POSITION.NEXTPENDING;

end loop;
end GETREADY_STEPS_l;

-- get the top steps in the ready list and
-- insert them into the corresponding readylist
-- according to their Laxity.

procedure GETREADYSTEPS_2 (LIST :in out LINK;
RQUEUE: in out LIST_VECTOR) is

POSITION : LINK LIST;
PREVIOUS : LINK null;
temp natural;
templ natural;
begin

if POSITION /= null then
temp := POSITION.EARLIESTSTART_TIME

end if;
while POSITION /= null and then

POSITION.EARLIESTSTART_TIME = temp loop
templ :=
EXPERTISELEVEL POS (POSITION. EXP_LEVEL)

+ 1;
INSERT_ORDER_LAXITY (RQUEUE(templ),

POSITION);
DELETEFROM_PE.TDINGLIST(LIST, POSITION,

PREVIOUS);
POSITION := POSImION.NEXT..PENDING;

end loop;
end GETREADYSTEPS_2;

procedure SUGGEST_DEADLINE_SLIP(STEP in out link;
VALUE :in natural) is

answer :character := In';

344

II

begin
put(Oin-fecsible schedule: step # ");
test_io_pkg.put (STEP.STEPID); newline;
put(osuggested deadline should be >= *);

testio__pkg.put (VALUE); new._line;
put (*Would you like to change it? Answer(y/n)1;

get(answer);newline;
if answer = 'y, or answer = 'Y'
then

put (uEnter the new Deadline ");
get (STEP.deadline);
STEP.DEADLINECHANGE := TRUE;

else
putline(OINFEASIBLE SCHEDULE");

end if;
end SUGGEST_DEADLINESLIP;

-- checking the feasibility of the schedule with
-- each step in the ready queue
procedure STRONGLY_FEASIBLE (RQUEUE : in LINK;

MATRIX : in
DESIGNERMATRIX;

DVECTOR : in vector;
MAXLEVEL : in natural;

FEASIBLE : in out boolean) is
CURRENT : LINK := R.QUEUE
PREVIOUS : LINK : null;
temp, templ . natural;

J : natural := 1;
L : natural =1;

MIN : natural :=0
begin

FEASIBLE := TRUE ;
while CURRENT /= null and FEASIBLE loop

LEVELMINMUM
(MATRIX,CURRENT.EXPLEVELMAXLEVEL,

DVECTOR,L,J);
-- putline (" pass 10 ");

MIN := MATRIX(L,J);
if MIN >= CURRENT.EARLIESTSTARTTIME
then temp := MIN;
else temp :=

CURRENT.EARLIESTSTARTTIME;
end if;

345

temp := temp +

CURRENT.ESTIMATED_DURATION;

IF temp > CURRENT.DEADLINE
then

SUGGEST._DEADLINESLIP(CURRENT, temp);
-- FEASIBLE := FALSE;

end if;
if temp > CURRENT.DEADLINE then

FEASIBLE := FALSE;
end if;

PREVIOUS := CURRENT
CURRENT = CURRENT. NEXT_READY

end loop;
end STRONGLY_FEASIBLE;

-- Assign a step to a designer according to its deadline
-- and its expertise level
procedure ASSIGN._STEP (RQUEUE : in out LIST_VECTOR;

LIST : in out LINK;
MATRIX : in out

DESIGNERMATRIX;
ROWLENGTH : in vector;
M,N in out natural;
L in natural;

SCH in out LINKI;
done out buolean) is

K, finish natural;
MIN : natural := MATRIX(M,N);
MINi: natural;
J natural := 1;
temp : natural := 0;
tempi: link := R.QUEUE(L);
begin

done : TRUE;
K :=

EXPERTISE_LEVEL'POS(templ.EXP_LEVEL) + 1;
J ROW_MINMUM(MATRIX, templ.EXP_LEVEL,

ROW_LENGTH);
if j /= 1000 then

MINI := MATRIX(K,J);
else MINi := 1000;
end if;

if MINI <= templ.EARLIESTSTART_TIME
then

temp := templ.EARLIESTSTART_TIME;

346

finish temp +
tempi ESTIMATEDDURATION;

MATRIX (K,J): finish;
M K;
N J
CREATESCHEDULERECORa templ. STEPID~temp,
finish, J,teinpi EXP..LEVEL,
EXPERTISE_LEVEL-VAL(K-l));
INSERT_.ORDERSTART_.TIME (SCH,

NEW-SRECORD);
DELETEROM_..READY..QUEUE (RQUEUE (L));

el s if ((M > K) and then (R..QUEUE (M)/ null1) and then
(RQUEUE(M) .EARLIESTSTARTTIME <= MIN)) then
done :=FALSE;

else
if MIN >= templ.EARLIEST_.STARTTIME
then temp :=MIN;
elsetemp :=templ.EARLIEST_START..TIME;
end if;

finish :=temp + temp1.ESTIMATED...DURATION;
MATRIX (MN): finish;
CREATE-..SCHEDULERECORD (tempI.STEP...ID,
temp, finish,N, templ .EXPLEVEL,
EXPERTISELEVELIVAL(M-l));
INSERT_ORDER.STARTTIME (SCH, NEWSRECORD);
DELETE_FROMREADYQUEUE(CRQUEUE CL));
end if;

end ASSIGNSTEP;

-- reset the step list and the schedule for
-- incrementing the schedule
-- with new steps at certain time

procedure RESETý_FOR_RESCHEDULING(
d_list :in out D...LINK;
LIST in out LINK;
MATRIX :in out

designer-matrix;
d_ývector :in vector) is

M,N,index, length natural;
step...id, finish_t :natural;
designer string(l..16).
data.~file2 FILETYPE;
CURRENT :LINK;
begin
OPEN~data-file2, IN..JILE, Otemp3w);

WHILE not END _OF_FILE(data~file2) loop

347

get (data...file2, stepjid) ;skip...line (data..file2);
-- ~test~io..pkg.put (step...id);

get (data...file2, finish...t);
-- ~test~io..jLkg.put(finish...t);

skip...line~data...file2);
get~line(data..file2,designer, length);

for i in length+l. .16 loop
designer(i) =

end loop;
-- put(designer);
-- new._line;
-- ~skip_line(data...file2);

CURRENT :=LIST;
while CURRENT /= null loop

if member (step...id,CURRENT. PREDECESSORS)
then
CURRENT. IN_DEGREE:= CURRENT. IN...DEGREE-l;
if CURRENT.EARLIESTý_START....IME <finish_t
then CURRENT.EARLIEST_START...TIME

finish...t;
end if;

end if;
flind..designer...position (d....list, index,

designer);
if index <=d-vector(l)
then M 1;

N index;
elsif index > d...vector(1) and index

<=(dv.ector(l)+d--vector(2))
then M 2;

N index - d_vector(l);
elsif index > (d..vector(l)+ d....ector(2))
then M :=3;
N : = index - (d...vector (1) + d...vector (2))
end if;

if MATRIX (M,N[<finish...t
then

MATRIX (M,N):=finish-t;
end if;
CURRENT :=CURRENT.NEXT;

end loop;
end loop;

CLOSE(data-file2);
-- DELETE(data_file2);

except ion
when NAME...ERROR=>

348

I
putline(ONo original schedule');

end RESET_FORRESCHEDULING;

-- Search for target step. Return the position and
-- previous if found.

procedure FINDDESIGNERPOSITION(HEAD in DLINK;
D_INDEX out natural;

d_name in string) is
POSITION D_LINK := HEAD
K : natural :=l;

begin
while POSITION /= null and then POSITION.D-name /=

d_name loop
POSITION POSITION.NEXT
k := k+l;

end loop
D_INDEX := k
end FINDDESIGNERPOSITION

end scheduler;

3. Main Programs

new ecs.a (Manager Interface) *

-- Title : ManagerInterface main program
-- Author : Salah badr
-- Date : 25 August 1993
-- Revised
-- System : Suns7
-- Compiler VerdixAda
-- Description

with ECSOPERATIONS; use ECS_OPERATIONS;
with TEXTIO; -- BASIC_NUM_IO;
use TEXTIO; -- BASIC_NUMIO;
-- Main program.
package ecsmanager is

Namel STRING(l..9) := "supportDB";

349

option :STflINGUl. 1)
Name3 :STRING(l..64);
Nazne4 :STRING(l..64);
Name5 :STRING(l. .64);
Name6 :STRING(l..64);
Name7 :STRING(l..64);
Name8 STRING(l..64);
Name9 :STRING(l..64);
NameA :STRING(l..64);
NameB :STRING(l..64);
NameC :STRING(l..64);
NameD :STRING(l..64);
NameE :STRING(l..64);
a..name :STRING(l..64);
an...id :STRING(l..5);
SELECTOR :natural :=0;
Length :integer;
answer :character:='y6 ;
data-file :FILE...TYPE; -- logical file definitions
data-filel :FILE_TYPE; -- logical file definitions

procedure ECS1;

end ecsjnanager;

package body ecs~jnanager is

procedure ECS1 is

package nat~io is new integerjio(natural); use

nat~io;

begin

putjline(*ECS has been entered.");
put(*Name3 =>)
put..line(Name3);
put(mSELECTOR =>
put(SELECTOR);
new_line;

case SELECTOR is
-- Show the prototypes in the database.

350

when 1 => - -show prototypes
option:=0M 8";
ShowProt't~ypes(Nanie1, option);

when 2 => -- show steps

option: =80
Show._Step (Namel,opt ion, Name3);

when 3 => -- show step

option:=20;
Show...Step (Namel,option, Name3);

when 4 => -- show schedule
option:=TM 20;
ShowSchedule (Namel, option);

when 5 => - -create prototype
option:=*1";

put(*Enter prototype's name: 0);
get~line (Name3, Length);
for i in Length+l. .64 loop

Nam,3(i):= ;

end loop;
Create...Prototype (Namel,opt ion, Name3);
put("More subcomponents to add~answer Y/

N]:)

get(answer);
skip...line;
while answer=1y, or answer=,Y loop

put (REnter component name: *)

getjline (Name5,Length);
for i in Lengthl.1..64 loop

Name5(i):='*
end loop;
put(*Enter parent component name: 0);

getjline (Name7, Length);
for i in Length+l. .64 loop

Name7(i):=';
end loop;
Add_.SubComponent (Namel, "4" ,Name3,

"1 :1", Name5, "1 :1" ,Narne7);
put(*More subcomponents to add[answer

YIN]:)

get (answer);
skipjline;

end loop;
when 6 => --create step

optiofl:="10;
CreateStep (Namel, option, Name3 ,Name4);

when 7 => -- edit step

351

system~call(mmainstep *&Namel&o 4 "&Name3&0
"O&NameE&O "&Name4&0 '&Name5&0 O&Narne6&-
"O&N3Ine7&0 *&Name8&0 O&Name9&0 O&NameA&O
"O&NameB&O "&NameC&O O&NameD&O > temp5l);

OPEN(data-.file, IN...FILE, "temnp5");
get_line(data...file,a..namne,length);

for i in Length+1. .5 loop

end loop;
if a...name(l) ='s then

put~designers(Namel, "2");
get...sched~data(Namel, "0");
get...sched...data.~.l(Namel, "0");
nmain(1);
elsif a...name(l) =1c, then

put..line (*Cannot Update a Completed Step") ;
elsif a...name(l) ='a, then

put-line("Cannot Update an Abandoned Step") ;
end if;
CLOSE(data-..file);

when 8 => -- approve step
option:=Ocm;
Show...Step (Namel, option,Name3);

when 9 => -- schedule step
put..designers(Namel, "2");

get~sched.data (Name!, Name3);
get...sched_.data...l(Namel, "0");

main (1)
when 10 => -- commit step

option:=Oem;
ShowStep (Namel, option, Name3);

when 11 => -- suspend step
begin

system~call("mainstep O&Namel&u i O&Naxne3&* 1 >
temp");

OPEN(datajfilel, INFILE, "temp");
WHILE not END_OF_FILE(datajfilel) loop

getjline (catajfilel, an~id, length);
for i in Length+1. .5 loop

an_id(i):= '
end loop;
get...line(data_filel,Namne4,length);
for i in Length+1. .64 loop

Name4(i):= ;

end loop;

352

auto_mail2(Narne4,an~id);
end loop;
put...designers(Namel, "20);
get~sched~data(Namel, "00);
get-sched_datajl(Namel.. 0");
mnain(0);
CLOSE(data...filel);

exception
when NAME-ERROR=>
put~line("No ready assignment for this

designer*);
end;

when 12 => -- dbandon step
begin

system..call(mmainstep "&Namel&" i m&Name3&" 5 >
temp");

OPEN(data...filel, IN...FILE, "temp");
WHILE not ENDOFjILE(data...filel) loop

get..line(data...filel,an...id.length);
for i in Lengthl-....5 loop

an..id (i):=
end loop;
get...line (datajfilel, Name4, lengthi);
for i in Length+l. .64 loop

Name4(i):='
end loop;

autojnail3 (Name4, an..id);
end loop;
put...designers(Namel, "2");
get_sched_data(Naxnel,"0"0);
get_sched_data....(Namel,0O");
main (0)
CLOSE(data-filel);

except ion
when NAMEERROR=>
put...line(*No tieady assignment for this

des.-'gner");
end;

when 13 => -- remove transfer file
systemq_call("rm ddbdisplay");

when 14 => -- add designer
option:=4l";
for i in 25. .64 loop

Name3(i):= ;

end loop;
for i in 2. .64 loop

353

Name4(i):= ;

end loop;
Add...designer (Namel, option, Name3 ,Namne4);

put-designers(Namel, "2");
get...sched...data(Namel,0O");
get_sched_data_l(Namel, "0");
main (0)

when 15 => -- show designers
option: =02";
Show...designer(Namel, option);

when 16 => - - Delete designer
option:=030;
for i in 25. .64 loop

Name3(i):=' 1;

end loop;

-- if status= busy, reschedule
Delete_designer (Namel, opt ion, Name3);
--and reschdule
if Name41. .4) = "Busy" then
put...line(ONOTICE: The Designer just

deleted was busy");
put-line(" RESCHEDULING his/her tasks.");
get_sched_data_2(Namel,Name3);

system...call (Omainsched m&Namel&* 7 '*&Name3);
put...designers(Naznel, "2");
get...sched...dataj (Namel, Name3);
main (0)
end if;

when 17 => -- Change expertise level
option:=040;
for i in 25. .64 loop

Name3(i):=' U

end loop;
for i in 2. .64 loop

Narne4(i):=' I

end loop;
Change...exp...level (Namel, opt ion, Name3 ,Name4);

put...designers(Namel, "2");
get_sched_data(Namel, "0");
get-sched-data..1(Namel,"O");
main(l),

-- exception handling for selector case.
when others =>

354

I

put(m BAD CHOICE. PLEASE TRY AGAIN*);
new_line

end case;
end ECS1;

begin

null;

end ecs.manager;

Designer Interface a ** ********S

-- Title : DesignerInterface program
-- Author . Salah badr

-- Date 25 September 1993
-- Revised

-- System Suns7
-- Compiler . VerdixAda

-- Description

with ECS_OPERATIONS; use ECSOPERATIONS;
with TEXT_IO; -- BASIC_NUMIO;
use TEXT_IO; -- , BASIC_NUM_1O ;

-- Main program.
procedure DESIGNERINTERFACE is

package nat io is new integer_io(natural); use natio;

Namel : STRING(l. .9) : supportDBO;
option : STRING(1. .1)
Name3 : STRING(l..64);
Name4 : STRING(I..64);
Name6 : STRING(I .64);
NameS : STRING(l..64);
Name7 : STRING(l. .64);
anid : STRING(I .5);
the_time :string(l. .14);
SELECTOR natural := 0;
Length integer;
data-file FILE__TYPE; -- logical file definitions
datafilel FILETYPE; -- logical file definitions
answer :character :='y';

-- DISPLAY THE MAIN MENU.

355

procedure DESIGNERMENU is
begin

new-line;
set_col(25); put("DESIGNER MENU"); new-ljine;
set-col(25); put("===========); new~line(2);
set-col(5); put("[l] Show Prototypes");
new_1ime;
set-col(5); put("(?] Show Compon-rxt Subtree");
newJine;
set_col(5); put("[-) iow Steps*);
new-line;
set~col(5); put("(41 Show Step");

set~col(5); put(", 1 Create Prototype*);
new~lime;

-- set-col(5); put(*[6] Create Step");
-- new_line;

set-col(5); put("(6] Create Substepo);
newý_line;
set-col(5); put(0[7] Commit Substep");
newý_line;
set-col(5); put("[8] Retrieve Version");
newline;
set-col(5); put("(9] Retrieve Spec File");
new_line;
set-col(5); put(0[lO] Retrieve Imp File");
new~line;

set_col(5); put("[ll] Show Schedule");
new_line;
set-col(5); put("[12] Quit"); new_line(3);

set~col(S); put(*Enter the number of your choice

end DESIGNER_MENU

begin
l p
begin

system~call("mainstep "&Namel&" h >temp");
OPEN(data-file, INFILE, "temp");
get...line(data..file,an~id,length);
for i in Length+1. .5 loop
an_id(i):= '

end loop;
if anjid(l) ='F' then

356

get~jine(data...file,Name4..length,;
for i in Length+l. .64 l.oop

Name4(i):= ;

end loop;
system..call("mkdir "&Name4);

getjline(data...file,anjidlength);
for 1 in Length+l. .5 loop

an-id(i) :='
end loop;
system_call("mainstep *&NarneL&" g *&an_id);

end if;
CLOSE(data-file);
system-call("rm tempo);
end;

- - loot)
DESIGNERMENU

get (SELECTOR); skip-ljine
case SELECTOR is

-- Show the prototypes in the database.
when 1 => -- Show Prototypes

option:=*8';
Show_Prototypes(N~amel,option);
system-ca2J1(more ddbdisplay');

when 2 => -- Show Component Subtree
option:="3"
put(*Enter prototype's name: ;
get-line(Name3,Length);
for i in Length4.l. .64 kýcp

Name3 (i =,

and loop;
put (*Enter variat~on and version [va:-:ver]

get_line(Name6,Length);
for i in Length+l. .64 loop

Narne6Ci : *

end loop;
put(*Enter component name: 1):
getI _irne Narne5, Length) ;
for -, n .ech..64 lzer.

gener3 -_function (Nar~e.,optoi, Na.n~e3, Narre6, Name5);
when 3 =--- Show Steps

c~t icn:="3"
put VEnter Step stat-is cr all to sc--e all tbte

steps:

357

get...line (Name3, Length);
for i in Length+l. .64 loop

Naine3 (i)
end loop;
ShowStep(Namel~option,Name3);
system_call("rnore ddbdisplay");

when 4 => -- Show Step

option: =42";
put(OEnter step~id: 0);
get...line (Name3, Length);
for i in Length~l. .64 loop

Name3(i):= ;

end loop;
ShowStep (Namel, opt ion,Name3);
system...call ("more ddbdisplay');

when 5 => - - Create Prototype
option: = 1";

put(wEnter prototype's name: 0);
get...line (Narne3, Length);
for i in Length+l. .64 loop

Name3Ci):=' 1;
end loop;
CreateP.rototvpe(Namel,optionNarne2';

put (*More subcomponents to add (answer
YIN]:)

get (answer);
skip..) me;
while answer='y or answer'Y' loop

put("Enter component name:)

get..)me (NameS. Length);
for i in Length~l. .64 loop

Name5(i):= ;

end loop;
put(* Enter par.ent coznponerit nawre:)

get..line(Name7. Length);
for i in- Length+l. .64 loop

Name7 Ci) . -

end loop;
AidSubComponernt (Nmý 1'4". "1e3

' :1 ,Name5," .:7 I " Name >;

put ,"More suhcomponent s : o add Ianswoc r
YIN)."

yet (answer)
ski~p...inc?;

£ end loop;
when 6 = -- create subsrtep

358

option:=*b";
put(OEnter parent stepjid: ");

get...line (Name3, Length);
for i in Length~l. .64 loop

Name3 (i):;
end loop;
put(OEnter primary input:)

getjline (Name4, Length);
for i in Length~l. .64 loop

Name4(i).=
end loop;
put(*Enter Estin-ated duration: 1);
get~line(Name5. Length);
for i in Length+l. .64 loop

Uarne5 (i):=I
end loop;
create...substep (Namel .option. Name3,

Name4,Name5);
put..designers(Namel. "20);
get~sched....data(Namel, SO");
systeir._call(ocat temps temp8 > temp9");
systemr_call("rm temps temp8");
system_call("m'v temp9 temps*);
get...-ched_data_l(Namel. "0");
main (0)
Show_..Schedule(Naniel, "2");
system..call(omore ddbdisplay*);

when 7 => -- commnit substep
begin

option: =O;
put("Enter step...id:)

ger...line CName3, Length);
for i 1-. Length~l. .64 loop

Name3(i) := 1;

end loop;
ShowStep (Narnel, opt ion, PName3);
get _current_time(the_tirme);

re~move_-, 3e,- "Irom_s chedu 1e, Nar re, "fce.
'he-t ime);

OFENfdata-tilel, INF7ZE,Cte-rp4"i;
get...llne(data_fiiel.an....d~engthi;

for 1 in Length~l. .5 loop
an_.~d (i):=

end loop;
if an-id(l) =N' then

WHILE not ENTM_0F_FILE(data-fiueli 'Cop

359

get_line(data-filel,an~id,length);
for i in Length+l. .5 loop

an..id(i) :=' *

end loop;
get...line(data...filelNamte4, length);
for i in Length+l. .64 loop

Name4(i):=';
end loop;

update..time(Namel, "5*,an~id, che~time);
auto..mail (Name4,an...id);
Change..status(Namel,050, Name4);
general..update(Namel, "70,an~id, p3w);

end loop;
elsif an-id(l) ='R' then
put~designers(Namel,02");
get...sched_data(Narnel,NSO);
get...sched...dataj(Namel, 00);
main (0)
Show...Schedule(Namel,N2");
system_call("more ddbdisplayo);
end if;
CLOSE(data...filel);

except ion
when NAMEERROR=>
puat-.line(*No ready assignment for this

designer");
end;

when 8 => -- dump version
option:=494; -- option=6 for dump compo.

put("Enter prototype's name: ~
get~line (Name3, Length);
for i in Length+l. .64 loop

Name3(i):= ;

end loop;
put("Enter component name: 0);
get..line (Name5, Length);
for i in Lerngth+l. .64 loop

Name5(i W
end loop;
put('Enter variation and version:)

get...line (Name6, Length);
for i in Length~l. .5 loop

Name6(i).-,
end loop;

fDump....version(Name'l,optionNa~e3 .Narne5,Nlcme6);
wihen 9 => -- dump spec file

360

option:=4"a;
put(OEnter prototype's name: ;

get...line (Name31 Length);
for i in Lengths~l. .64 loop

Narne3(i):= ;

end loop;
put("Enter component name: 1);
get~line (Name5, Length);
for i in Length+l. .64 loop

Name5(i):=' 1;
end loop;
put(OEnter variation and version:)

get...line (Name6, Length);
for i in Length+l. .5 loop

Name6 (i):'*
end loop;

Dump_..version(Namel,option,Name3,Name5,Name6);
when 10 => -- dump Imp. file

option:=Nbo;
put(OEnter prototype's name: 0);
getjline (Name3, Length);
for i in Length+l. .64 loop

Name3(i):= ;

end loop;
put(*Enter component name:)

getjline (Name5, Length);
for i in Lengthl.i..64 loop

Name5Ci):=' ';

end loop;
put("Enter variation and version:)

get...line (Name6,Lnt)
for i in Length+1. .5 loop

Name6(i):= *

end loop;
Dujmp..version(Namel,option.Name3,Name5,Name6);

when 11 => -- show schedule
option: =02";
Show-.Schedule (Namel~opt ion);
system-call (omore ddbdisplay*);

when 12 =>~

put(*thank you Bye ...Be)

new...line
f'Xit;

-- exception handling for selector case.
when others =>

361

I
put(* BAD CHOICE. PLEASE TRY AGAIN");
newline

end case;
end loop;

end DESIGNERINTERFACE;

ddb.lnterface.a (Tae for manager interface) *

-- Title : Tae program for manager interface
-- Author Salah badr
-- Date : 25 October 1993
-- Revised
-- System . Suns7
-- Compiler VerdixAda
-- Description

with tae; use tae;
with X_Windows;
with text-io; use text-io;
with ecsmanager; use ecs_manager;

procedure ddbinterface is

-- FILE: ddb_interfacesupportspec.a
-- Supporting procedures for ddbinterface
-- Including event handling routines.

package ddb_interface_support is

package taefloat_io is new text_io.floatio (taefloat);
package taeint io is new text_io.integerio(taeint);

package intio is new text_io.integer.io(integer); use
int_io;

procedure initializePanels (file in string); -- NOTE:
params changed

procedure CLEAR_STEPINFO;

-- BEGIN EVENTHANDLERs

362

procedure main...selection-I (info :in
tae..wpt .event~context~ptr);

procedure editstep~base...version (info :in
tae~wpt.event context~ptr);

procedure editstep~pri~input (info :in
tae~wpt .event~context.~.ptr);

procedure editstep..predecessors (info :in
tae..ypt .event~context~ptr);

procedure editstep...priority (info in
tae~wpt .event..context...ptr);

procedure editstep...expjlevel (info in
tae..ypt .event...context...ptr);

procedure editstep...deadline (info in
tae..wpt .event~context...ptr);

procedure editstep...est_duration (info :in
tae..wpt .event~context...ptr);

procedure editstep...secjinput (info in
tae...wpt event~context...ptr);

procedure editstep~affected (info in
tae..ypt .event~context~ptr);

procedure editstep...return (info :in
taeywpt .event~context~ptr);

procedure editstep~apply...step (info in
tae..ypt.event context...ptr);

procedure editstep...cancel~step (info in

procedure editteamn..name (info :in
taeý_ypt .event...context...ptr);

procedure editteamr_ex...opt (info :in
tae...pt .event~context...ptr);

procedure editteam_d~cancel (info in
tae~wpt.event context~ptr);

procedure editteam...designers (info in
tae~wpt .event~context...ptr);

procedure editteam..selection_.3 (info :in
tae...wpt.event_context..ptr);

procedure confirm..yes (info :in
tae...wpt.event_context-ptr);

procedure confirm~no (info :i
tae..ypt.event_context...ptr);

procedure s~select_s~select...item (info: in
tae...pt.event_context...ptr);

procedure showstep~s_select..item (info: in
tae~wpt .event~context...ptr);

procedure show..step_number (info :in
tae...wpt event~context~ptr);

363

procedure show_show~finish (info :in
tae...wpt .event~context~ptr);

procedure textl...display..done (info in
tae...wpt.event_context...ptr);

pro.cedure textl-text_itemr_1 (info in
tae...wpt .event~context..ptr);

procedure steptype..type~selection (info :in
tae..wpt .event~context..ptr);

procedure editnums_select~item (info :in
tae-wpt.event_context...ptr);

- - END EVENT_[ANDLERs

end ddb_interface..support;

- - ENDFILE: ddb~interface~support~spec. a

use ddb...interface~support;
use tae.tae~misc;

theDisplay :X_Windows.Display;
user...ptr tae~ypt.event_context~ptr;
main_info tae...wpt.event_context-ptr;
editstepjinfo :tae...wpt.event-contex....ptr;
editteamr_info :tae..wpt.event-context-.ptr;
confirm~info :tae~wpt .event...context..ptr;
s-select-info :tae...wpt.event-context-.ptr;
showstep-..info: tae...wpt.event_context-..ptr;
showjinfo tae..ypt .event~context~ptr;
textl~info tae...wpt .event~context..ptr;
steptype...info tae...wpt.event-context...ptr;
editnumý_info taewpt.event~context..ptr;
etype :wpt_eventtype;
wptEvent :tae...pt.wpt...eventptr;

dummy :boolean; -- used to clear out the wpt 'event queue

type activity...selector is (editing, creating);

MAXDESIGNERS integer 20;
MAXSEC_INPUTS integer 20;

secondary..jnputs s_vector(l. .MAX_SEC_INPUTS) (others
=> new string~l. .64));

affected modules :svector(l. .MAX...SEC..INPUTS) (o'-hers

364

=> new string(1..64));
designer~info :s_vector(l. .MAXDESIGNERS) :=(others

=> new string(1. .64));
deadline : string(l. .24);
designer : string~l. .24);
start-time : string(l. .24);
status : string(l..24);
finish-.timne : string(l. .24);
sub-..steps : string(l..24);
predecessors :string(l. .24);
expertise...level : string(l..24);
designer...status :string(1. .24);
base...ersicn :string(l..64);
primary...input- : string(l..64);

data-file : text...io.file...type;
length :integer;
counter :integer;

temp...string :string(1..64);

priority :integer;
est_duration :integer;
step_number : integer;

editing~or..creating :activity...selector;

-- FILE: ddb..interface-support....body-a

package body ddb...interface~support is

procedure initializePanels (file :in string) is

use tae.tae_co;
use tae.tae~misc;

tmp...info: tae...wpt.event_context~ptr;
dummy BOOLEAN;

begin

-- do one Co_ýNew and Co..yeadFile per resource file
trnp..info : new tae...wpt.event~cortext;

365

Co.New (0, tmp-info.collection);
-- could pass P-ABORT if you prefer

Co...ReadFile (tmp~info.collection, file, P...CONT);

-- pair of Co_Finds for each panel in this resource file

main-..info :=new tae_wpt.event_context;
main..jnfo.collection :=tmp~info.collection;
Co_Find (main~info.collection, Omain~v"

main-info.view);
Co..Find (main-info.collection, inmain-..t*,

main~info. target);

editstep...info :rnew tae~wpt.event~context;
editstep...info.collection :=tnp..info.collection;
Co_Find (edicstep...info.collection, Neditstep...v*,

editstep~info.view);
Co_Find (editstepjinfo.collection, Oeditstep~t*,

editstep~info.target);

edittearq_info :=new tae..ypt.event_context;
editteam~info.collection :=tmp~info.collection;
CoFird (editteam_info.collection, "editteam...v'.,

edi ttearq_inf o. view) ;
Co_Find (editteam...info.collection, Neditteam...t",

editteamr_info.target);

confirm~info :=new tae~ypt.event~context;
confirm...info.collection :=tmp..info.collection;
Co_Find (confirm...info.collection, "confirmr_v",

confirm_info.view);
Co_Find (confirm_info.collection, Oconfir.mt",

confirm_info.target);

s-select-info :=new tae..wpt.event...context;
s--.select-info.collection :=tmp..info.collection;
CoFind (s-..select-info.collection, "s-select-v",

s-select-info.view);
CoFind (s...select-info.collection, "s-select-t*,

s-select-info.target);

showstep~info := new tae...wpt event~context;
showstepjinfo.collection := tmp~info.collection;
Co_Find (showstep~info.collection, "showstep...v",

showstep...info.view);
Co_Find (showstep...info.collection, "showstep...t*,

366

showstep...info target);

show....nfo :=new tae...wpt.event-context;
show~info.collection :=tmp~info.collection;
CoFind (show...info.collection, "show~v",

show~info.view);
Co_Find (show_info.collection, "showý_t*,

show~info target);

textl-.info :=new taew..%pt.event_context;
textl-info.collection :=tmp~info.collection;
Co-Find (textl-info.collection, "textl...v',

textl-info.view);
Co-Find (textl~info.collection, Otextl-.t",

textl~info.target);

steptype...infa : new tae...wpt.event...context;
steptype...nfo.collection :=tmp...info.collection;
CoFind (steptype...info.collection, -steptype~v-,

steptype...info.view);
Co_Find (steptype..info.collection, Osteptype..tO,

steptype...info. target);

editnumiinfo :=new tae...wpt-.event-context;
editnumninfo.collection :=tmp_info.collection;
Co_Find (editnumq_info..collection, OeditnumqvO,

editnum~info.view);
Co_Find (editnuxn_info.collection, leditnumr_t",

editnumnjnfo .target);

-- Since there can now be MULTIPLE INITIAL PANELS defined
from

-- within the TAE WorkBench, call Wpt...NewPanel for each
panel

-- defined to be an initial panel (but not usually all
the panels

-- which appear in the resource file).

if main~info.panel..id = NULL...PANEL_ID then
tae..wpt.Wpt_.NewPanel (10, main_info.target,

main-info.view,
Xyindows .Null_ýWindow, main_info,

tae..wpt .WPT_PREFERRED,
main nt o.panel...id);

367

else
tae..ypt .Wpt..Set PanelState

main...info.panel...id, tae~wpt.WPTPREFERRED));
end if;

dwum: : Tae_.ypt.Wpt_Pending;

end initiaiizePanels;

procedure CLEAR...STEP_INFO is

begin

for i in l..20 loop
secondary...inputs(i) .all

affected...modules(i) .all

end loop;

deadline .

designer
start-time NN

status *N

finish__time.-
sub_steps.
predecessors
expertise_level N

baseversion

primary...input

temp...string

priority 0;
est-duration 0;

end CLEAR..STEP..INFO;

- - BEGIN EVENT_HANDLERs

368

procedure main~selection..l (info :in
tae...wpt .event...context-..ptr) is

value :array (1. .1) of string
(1. .tae-.taeconf.STRINGSIZE);

count :taeint;

begin
text...io.put ("Panel main, parrn selection_1: value
taevm.VmExtractCount (info.parm~jptr, count);
if count <= 0 then

text..io.put~jine ("none$);
else
tae..ym.Vmý_Extract_.SVAL (inf o.parm..ptr, 1, value (1))

textjio.putjline (value(l)l;
end if;
if (FALSE) then null;
elsif s..equal (value(l), "show prototypes") then

SELECTOR :=1;
ECS1;

if texti_info.panel_id = NULL_PANELID then
tae~wpt.WptjNewPanel ("", textl_info.target,

text l-info .view,
X__Windows.NullWindow, textl_info,

tae..ypt .WPTý_PREFERRED,
t.ýxt1_info.panel~id);

else
tae..wpt.Wpt_SetPanelState
textl...info.paneljid, tae...wpt.WPTPREFERRED);

end if;
elsif s...equal (value(l), "show steps") then null;

if steptype_info.paneljid = NULLPANELID then
tae..wpt.WptNewPanel ("", steptype~info. target,

steptype...info .view,
X_Windows.NullWindow, steptype..Jnfo,

tae-wpt .WPTPREFERRED,
steptype...info.paneljid);

else
tae..ypt .Wpt...SetPanelState

steptype.Jnfo .panel.Jd,
tae...wpt .WPTPREFERRED);

end if;
elsif s...equal (value(l), *show step details") then

null;

369

if showstep...,nfo.panelild = NULL_PANEL_ID then
tae...wpt.Wpt...NewPanel ("', showstep~info. target,

showstep...nfo view,
XWindows.Null_Window, showstep~info,

tae_wpt.WPT_PREFERRED,
showstep...info.panelid);

else
tae~wpt.Wpt_SetPanelState

showstep...info panel...id,
tae_wpt.WPTPREFERRED);

end if;

TAae_Wpt.WptSetlntg(showstepjinfQ.panel~id,"s_sele
ct-.item" ,Taeint (0);

elsif s~equal (value(l), "show schedule") then
SELECTOR :=4;
ECSl;

if textl~info.panel_id = NULL_PANEL_ID then

textl-info.view,
XWindows.Null_Window, textl_into,

tae_wpt.WPTPREFERRED,
textl-info.panel-id);

else
tae...wpt.Wpt_SetPanelState
textljinfo.panel~id, tae..ypt.WPT_PREFERRED);

end if;
elsif s~equal (value(l), "create prototype") then null;
elsif s...equal (value(l), *create step") then

editing_or_creating := creating;
CLEAR_STEPý_INFO;

if editstep...info.panel...id = NULL_PANELID then
tae-..wpt..WptNewPanel ("", editstep~info. target,

edit stepjinfo view,
XWindows.NullWindow, editstep info,

tae_wpt .WPTPREFERRED,
editstep..info.panei~id);

else
tae~wpt.Wpt_SetPanelState

edit step..info .paneljid,
'ae-wpt.WPT_PREFERRED);
end if;

370

-- still need to clear displayed affected modules arnd
secondary inputs

TaeWpt.WptSetString(editstep~info.panel,..id, "base
-vers ion",

base-version);

TaeWpt.WptSetlntg(editstep~..info.panel_id, "est-du
ration",

Taeint (est-duration));

TaeWpt.WptSetString(editstep...info.panel~id, "exp_..
level*,

expertise-level);
TaeWpt.WptSetIntg(editstep~.info.panel..id, "priority",

Taeint (priority));

Tae...Wpt .Wpt_.SetString(editstep...info.panel...id, "desi
gner",

designer);

Taeý_Wpt .WptSetString(editstep...info.panel_id, "dead
line",

deadline);

Tae..Wpt .Wpt_.SetString (editstep...info.panel~id, "star
t~timew,

Taesjpt .Wpt_..SetString (editstep~info.panel~id, "fini
sh~time",

finish-..time);

TaejAWpt .Wpt...SetString(editstep~info.panel~id, "pri_
input",

primary~input);

TaeWypt .WptSetlntg(editstep.Jnfo.panel~id, "step~n
umber",

Taelnt (0))

TaeWpt.WptSetString(editstepjinfo.panel.Jd, "sub_
steps",

sub_steps);

371

TaeWpt.WptSetString(editstep~info.panel~id. "pred
ecessors",

predecessors);

elsif s...equal (value(l), *edit step =>*) then~ null;
if editnuik_.info.panel id = NULL_PANEL_ID then
tae_wpt.Wpt_NewPanel ("", editnuniRinf o. target,

editnumqinfo .view,
Xjsjindows .NullWindow, editnum_info,

tae..ypt.WPT_.PREFERRED,
editnumiinfo.panel~id);

else
tae..ypt .Wpt...Set PanelState

editnuxninfo.panel..id, tae~wpt.WPT...PREFERRED);
end if;

Tae...Wpt .WptSetlntg(editnumr_info.panel..id, "s_selec
t-item",Taeint(O));

elsif s~equal (value~i), "edit team =>") then null;
if editteamr_info.panel_id = NULL_PANELID then
tae..ypt .WptNewPanel (I", edit teamr_in 1o. target,

edit team...info .view,
XWindows .NullWindow, editteamr_info,

tae..yJpt.WPT..YREFERRED,
editteamrkinfo.panel..id);

else
tae-wpt.WptSetPanelState

editteam...info.panel_id,
tae...wpt .WPTPREFERRED);
end if;

SELECTOR :=13; -- remove data transfer file
ECSl;
SELECTOR 15; -- put 'show designers, information in data

transfer file
ECSl;

-- read in the designers from the transfer file (ddbdisplay)
into the editteam panel

text-io.OPEN(data_file,
text_io.IN..FILE, "ddbdisplay");

counter =1

372

while not end~ofjile(data,.file) loop

getjline(data.ji~le,designer~info(counter) .all, leng
th);

TAEWpt .WptSetStringConstraints (editteamr_info .pan
el-id,

"designers", Taelnttcounter),
designer-irfo);

counter :=counter + 1;

end loop;

text-io.CLOSE(data~file);

for i in counter. .MAXDESIGNERS loop

designer,,info(i) .all

TAEJ'Jpt .Wpt_.SetStringConstraints (editteamr_info.pan
el-id,

"designers", Taelnt (counter),
designerjinfo);

end loop;

elsif s...equal (value(l), "approve step*) then
Selector :=8;

if s...select-.info.panel..id = NULLPANELID then
tae~wpt.Wpt_NewPanel (00, s..select...nfo. target,

s...select-info .view,
X_Windows.NullWindow, s_selectjinfo,

tae~wpt .WPTý_PREFERRED,
s...select...info.panel_id);

else
tae...wpt .WptSet PanelState

s-..select...info .panel~id,
tae~wpt .WPT_.PREFERRED);
end if;

373

Tae_.Wpt .WptSetlntg(s...select..jnfo.panel~id, "s_sele
ct..item" ,Taeint (0);

elsif s...equal (value(l)', "schedule step') then
Selector :=9;

if s-select...info.panel~id = NULLPANELID then
tae...wpt.Wpt..yewPanel (00, s...select-info. target,

s-select..into .view,
XWindows .NullWindow, s..select..info,

tae..ypt.WP'rPREFERRED,
s~select..info.panel~id);

else
tae...pt .Wpt_.Set PanelState

s..select...info .panel...id,
tae...wpt .WPT...PREFERRED);
end if;

Taej'Jpt .Wpt_SetIntg(s..select..info.paneljid, "s-sele
ct-itemI,Taeint(0));

elsif s...equal (value(l), "commit step') then
SELECTOR := 10;

if s...select-info.panel_id = NULLP.ANEL_.ID then
tae_wpt.Wpt_NewPanel ("0, s_select_into.target,

s-select-info.view,
X_Windows .NullWindow, s...select...info,

tae...wpt .WPT_PREFERRED,

else
tae_wpt.Wpt_.SetPanelState

s_select...info.panel..id,
tae..wpt .WPT_PREFERRED);

end if;

Tae...Wpt .WptSetlntg(s...select..info.panel...id,"s~sele
ct~itemw,Taeint(0));

elsif s-equal (value(l), "suspend step') then
SELECTOR :=11;

if s-select...info.panel...id = NULL_...yNEL_ID then
tae_wpt.WptNewPanel (00, s..select info.target,

s-select-info.view,
XWindows .Null_.Window, s~select_info,

tae...pt.WPT....PREFERRED,
s-select-info.canel...id);

else

374

tae...wpt.Wpt_SetPanelState
s..select-info.panel~id,

tae...wpt .WPT_.PREFERRED);
end if;

Tae-Wpt.WptSetlntg(s...select..nfo.panel....d,"s~sele
ct...itern ,Taeint (Q));

elsif s...equal (value(l), "abandon step") then
SELECTOR :=12;

if s-.select-i.nfo.panel~id =NULLPANELID then
tae~wpt .Wpt_ýNewPanel ("", s~select..info. target,

s-select-.info .view,
X__Windows .Nullyindow, s..select...info,

tae..wpt.WPTPREFERRED,
s~select-info.panel~id);

else
tae..ypt .Wpt_..SetPanelState

s~select...info. panel~id,
tae~wpt .WPTPREFERRED);

end if;

Tae...Wpt.WptSetlntg(s..select_info.panel..id. "s~sele
ct~itemV,Taeint(O));

elsif s~equal (value(1), *quit*) then null;

end if;

tae..wpt.Wpt...PanelReset (xainjinfo.paneljid);

end main-.select ion~l;

procedtire editstep...base...version (info :in
tae...wpt .event..context~ptr) is

value :array (1. .1) of string
(1. .tae-.taeconf.STRINGSIZE);

count :taeint;

begin
text-..io.put ("Panel editstep, parrn base_version: value

= 0);

tae.~.vm.VmExtract..Count (info.parm~ptr, count);
if count <= 0 then

text...io.put_line ("none");
else
taev.Vm.Extract_..SVAL (info.parm...ptr, 1, value (1))

375

text...io.putjline (value(l));
end if;

base...version(1..64) :=value(l)(l..64);
end editstep...base_version;

procedure editstep...pri...input (info :in
tae,..pt .event~context~jptr) is

value : array (1. .1) of string
(1. .a.tae-taeconf.STRINGSIZE);

count :taeint;

begin
text...io.put (wPanel editstep, pa-rm. pri~input: value

0);

tae_vrn.VmExtract__Count (info.parm~ptr, count);
if count <= 0 then

text_io.put_line (Onone");
else
tae-vm.Vrn_Extract-SVAL (info.parm...ptr, 1, value(l))

text_io.put..line (value(l));
end if;

priznary..jnput(l...64) := value(l)(l..64);
end edit step~pri...input;

procedure editstep..predecessors (info :in
tae..ypt.event context..ptr) is

value :array (1. .1) of string
(1..tae-taeconf.STRINGSIZE);

count : taeint;

begin
text-io.put ('Panel editstep, parm predecessors: value

tae~ym.Vm...ExtractCount (info.parm~ptr, count);
if count <= 0 then

text_io.put..line ('none');
else
tae_vrn.Vmr_Extract_.SVAL (inf o.parnx..ptr, 1, value (1))

text-io.put...line (value(l));
end if;

-- need to turn the predecessors string into suitable numbers
for entry

-- into the ddb
predecessors(l..24) := value(l)(l..24);

376

-- currently only ADD PREDECESSOR is supported.

end edit step~predecessoro;

procedure editstep~priority (info : in
tae~wpt .event~context~ptr) is

value array (1.-1) of taeint;
count taeint;

begin
text~..io.put ("Panel editstep, parm priority: value

tae_vmn.Vrn_Extract..Count (info.parrn~ptr, count);
if count <= 0 then

text~io.put~line (Onone");
else
tae_vm.Vm_Extract...IVAL (info.parm~jptr, 1, value(l));

text~io.putjline (taeintlimage(value(l)));
end if;

-- assign priority := value(1) -- note type incompatability
priority := integer(value(l));

end editstep...priority;

procedure editstep~exp~.jevel (info :in
tae~wpt event~context..ptr) is

value :array (1.-1) of string
(1. .tae_taeconf.STRINGSIZE);

count :taeint;

begin
text..io.put ("Panel edicstep, parm exp~level: value

tae_vm.Vmr_ExtractCount (info.parm~ptr, count);
if count <= 0 then

text_io.putjline ("none");
else
tae_.vrn.Vmn_Extract_.SVAL (info.parmw.ptr, 1, value(l)l

text~io.putjline (value(1));
end if;

expertisejlevel(l. .6) := value(i) (1..6);
end edit step~expjlevel;

procedure editstep...deadline (info :in

377

tae..ypt .event~context~ptr) is
value : array (1. .1) of string

(1. .tae-taeconf.STRINGSIZE);
count :taeint;

begin
text...io.put ("Panel editstep, parm deadline: value

"0);
tae..vr.Vmr_Extract_Count (info.parm~ptr, count);
if count <= 0 then

text~io.put_line ("none");
else
tae~vm.Vm.Extract...SVAL (info.parm...ptr, 1, value(l));

text...io.put...line (value(l));
end if;

deadlineti. .24) :=value(l) (1..24);
end editstep~deadline;

procedure editstep...est...duration (info :in
tae...wpt.event-context~ptr) is

value :array (1. .1) of taeint;
count :taeint;

begin
text...io.put ("Panel editstep, parm est_duration: value

tae..vm.Vm_.Extract_Count (info.parm...ptr, count);
if count <= 0 then

text...io.put_line (*none");
else
tae_vm.Vmý_Extract_IVAL (info.parmn..ptr, 1, value(l))

text_io.put_line (taeintlimage(value(l)));
end if;

-- assign estimated~..duration := value(l) -- note type
incompatabiIi ty

est-duration := integer(value(l));

end editstep~est-duration;

procedure editstep~sec..input (info : in
tae~wpt .event~contextjptr) is

value :array Cl. .1) of string
(1. .a.tae-taeconf.STRINGSIZE);

count :taeint;

378

begin
text...1o.put ("Panel editstep, parm sec~input: value=

tae_vm.VmExtract_ýCount (into.parm~ptr, count);
if count <= 0 then

text_io.putjline ("none");
else
tae_vrn.Vm_Extract_SVAL (info.parm..ptr, 1, value(l))

textjio.put...line (valued.));
end if;

-- need to modify the secandar-y input array to reflect what
is in the TAE window

end edits tep..sec~input;

procedure editstep~affected (info :in
tae...wpt.event_context...ptr) is

value :array (1. .1) of string
(1.la..tae-taeconf.STRINGSIZE);

count :taeint;

begin
textjio.put (*Panel editstep, parrn affected: value

4) ;

tae-vm.VmExtract_Count (info.pariw..ptr, count);
if count <= 0 then

textjio.put~line (*nonetm);
else
tae_vm.Vrm_Extract_SVAL (info.parm..ptr, 1, value(l));

textjio.putjline (value(l));
-- need to modify the 4f fected module array to reflect any new

info
end if;

end editstep...affected;

procedure editstep~return C(info : in
tae..ypt.event_context~ptr) is

begin
if not (editstep~info.panel-id = NULL_PANEL_ID) then

tae..wpt .Wpt_..PanelErase(info.panel...id); end if;

end editstep...return;

procedure editstep...apply...step (info : in

379

I

taewpt.eventcontext_ptr) is
value : array (1..1) of string

(l..tae-taeconf.STRINGSIZE);
count : taeint;

begin
textio.put (*Panel editstep, parm applystep: value

= 0);

tae_vm.VmExtract_Count (info.parmptr, count);
if count <= 0 then

textio.put line (*none*);
else
taevm.Vm_ExtractSVAL (info.parmptr, 1, value(l)1;

text_io.put_line (value(l));

end if;
-- need to write all step stuff to ddb

if editingorcreating = creating then -- creating a new

step

begin

-- note that the parsing of the base version and the primary
input

-- is VERY rudimentary. We are currently expecting the user
to know

-- the required input form: base_version var:ver
primaryinput var:ver

if base_.version(l..3) /= " 0 then
if primaryinput(l..3) /= then

SELECTOR := 6;
Name3(1..64) := base-version(l..64);
Name4(1..64) primaryinput(l..64);
ECSl;

put_line("step creation complete");

else putline(obase version and primary input
required for step creation.");

end if;
else putline("base version and primary input required

for step creation.*);
end if;

380

end;

else -- editing a step

begin

Name4(l..3):="0 0";
for i in 4..64 loop

Name4(i):='
end loop;
NameS(l):='0';
for i in 2..64 loop

Name5(i):= ;

end loop;
Name6(l..3):=*O 0";
for i in 4..64 loop

Name6(i):= ;

end loop;
Name7(1):='0';
for i in 2..64 loop

Name7(il:= ;

end loop;
Name8(l..3):="O 0";
for i in 4..64 loop

Name8(i):=' ;

end loop;
Name9(1):='0';
for i in 2..64 loop

Name9(i):= ;

end loop;
NameA(1):='0';
for i in 2..64 loop

NameA(i):= ;
end loop;
NameB(1):='0';
for i in 2..64 loop

NameB(i):= ;

end loop;
NameC(1):='0';
for i in 2..64 loop

NameC(i):=

end loop;
NameD(1):='5';
for i in 2..64 loop

381

NarneD(i):=
end loop;
NameE(l. .4) :="flO 0";
for i in 5. .64 loop

end loop;

taeint~io.put(Naiae3,taeint(step...number));-
-- if primary...nput(1. .3)/=" .then
-- Name4(l..64) :=primary...input(l. .64); t-- tr

addition
-- end if;
-- if primary...r~put(l. .3)/=" then

-- ~Narne5i. .64) :=primary...ifput(l. .64); -- for
deletion

-- end if;
-- if secondary...inputs(l)(l..3)/=" then
-- Name6(l..64) := secondary..inputs(l)(l..64); -- for

addition
-- end if;
-- if secondary...inputs(l)(l..3)/=" "then

-- ~Name7(l..64) := secondary...inputs(l)(l..64); -- for
deletion

-- end if;
-- if affected-modules~i) (1..3)/=" "then

-- Name8(l..64) := affected-modules(l)(l..64); -~for

addition
-- end if;
-- if affected-rnodules(l)(l..3)/=" "then

-- Nanie9(l..64) := affected-modules(l)(l..64); -- for
deletion

-- end if;
taeint..jo.put (NameA, taeint (priority)); -- priority
if predecessors(1. .3)1=" . then
NameB(l..3) := predecessors(l..3);
end if;
taeintz_io.put(NameC,t.aeint(est_duration));
if expertise..jevel~l. .3) = 'low" t~ien NameD(l) '0
end if;
if expertise..jevel(l. .3) = 'med* then NameD(l) :1=

end if;
if expertise..jevelil..3) = "hig" then NarneD(1) '2'
end if;
NarneE(1..24) :=deadline~l..24);

put("step numiber:*); put(Name3); new..line;
put(Opriority:"); put(NameA); new-~~line;

382

put("estiniated duration:*); put(NameC); newjline;

put...line(oapply has been depressed while in the edit
mole") ;
put~line(ocalling ECS.0);

SELECTOR := 7;
ECSl;

put~line("ECS operations complete*);
end;

end if;

end editstep-apply~step;

procedure editstep~cancel~step (info : in
tae...wpt .event~context-jptr) is

value :array (l..l) of string (l..tae~taeconf.STRINGSIZE);
count taeint;

begin
text_io.put ("Panel editstep, parm cancel~step: value
tae-vrn.Vrn.ExtractCount. (info.parm~ptr, count);
if count <= 0 then

text~io.put...line ("none");
else

tae_:vm.Vmr_Extract_SVAL (info.parm~ptr, 1, value(l));
text-io.put~line (value(l));

end if;

-- should probably retrieve all of the old step information and
refresh

-- the edit step window

for i in 1. .MAXSEC_INPUTS loop

TAE...Wpt .Wpt..SetStringConstraints (editstepjinfo.panel_ld

"sec...input", Taelnt(i),
secondary..inputs);

TAEj.Jpt.WptSetStringConstraints (editstepjinfo.panel~id

383

*af fected', Taelnt (i), a ffected_modules);

end loop;

Tae...Wpt .Wpt_.SetString(editstep...info.panel~id, "base...ers
ion",

base-..version);
Taevpt .Wpt_..Setintg(editstepjinfo.panel_id, "est~duration",

Taeint (est-duration));
Taeypt .Wpt..SetString(editstep...info.panel~id, "exp...level",

expertise-level);
Tae_.Wpt .WptSetlntg(editstepjinfo.panel.Jd. "priority",

Taeint (priority));
TaejJpt .WptSetString(editstep.~.info.panel..Ad, odesignero,

designer);
TaejJpt .WptSetString(editstep~info.panel..id, wdeadlinew,

deadline);
Taeypt .WptSetString(editstep..info.panel~id, "start~tirr.3",

start-time);
TaeWpt .WptSetString(editstepjinfo.panel..id, "finish~time",

finish..time);
Taeypt.Wpt_SetString(editstepjinfo.panel-id, "pri...input",

primary-input);
Tae_.Wpt .Wpt...Setlntg(editstep..info.panel~id, "step..nuxnber",

taeint (step-nuxnber));
TaeWpt.WptSetString(editstepjinfo.panel~id, "sub...steps",

sub-steps);

Tae...Wpt .Wpt...SetString (editstep~info.panel...id, "predecess
ors",

predecessors);

end editstep...cancel...step;

procedure editteam...name (info :in tae..wpt.event_context-Ptr) is
value array (l..l) of string (l..tae~taeconf.STRINGSIZE);
count taeint;

begin
text-.io.put ("Panel editteam, parm name: value
tae..vrn.VmExtract-Count (info.parm~ptr, count);
if count <= 0 then

text_io.put...line ("none");

384

else
tae..ym.Vnm.ExtracL_SVAL (info.parmuptr, 1, value(l) i;
text~io.put~line (value(l));

end if;
designer(l..24) :=value(l)(l..24);

end edit teaniname;

procedure editteam~ex~opt (info: in tae~wpt.event-context...ptr) is
value :array (l..l) of string (l..tae_taeconf.STRINGSIZE);
count :taeint;

begin
text,..io.put ("Panel edittearn, parni ex,..opt: value
tae~vzn.VrnlExtractCount (info.parm..ptr, count);
if count <= 0 then

text~io.put-line ("none");
else

tae~vm.Vm..Extract_SVAL (info.parm...ptr, 1, value(l));
text_io.put..jine (value(l));

Tae...Wpt .Wpt_.SetString(editteam~info.panel-..id, "expertise",
value(1));

expertise-level(l..24) := value(l)(1..24);
end if;

end edit teanTýex..opt;

procedure edit team_d_cancel (info :in tae..ypt.event-context...ptr)
is

value :array (1. .1) of string (1. .a.tae~taeconf.STRINGSIZE);
count :taeint;

begin
textjio.put ("Panel editteam, parm d~cancel: value=
taev.VmExtractCount (info.parm...ptr, count);
if c-ant <= 0 then

text..io.put~line ("none*);
else

tae_vzn.VimExtract_SVAL (info.parm...ptr, 1, value(l));
text..ic.putjline (value(l));

end if;
if info.panel...id = NULL-PANEL-ID then

tae...wpt.Wpt-NewPanel ("", info.target, info.view,
X-Windows .N'ull_Window, info, tae...wpt.WPT..yREFERRED,
info.panel...id);

else
tae...wpt .Wpt-.Set PanelState

info.panel~id, tae...wpt.WPT_PREFERRED);

385

end if;
Tae...Wpt.Wpt...SetString(editteam....info.panel-id, "name",

U U);

TaeWpt .Wpt...SetString(editteamjinfo.panel~id, "expertise",

0

0);

Tae...ypt .Wpt..SetString(editteam...info.panel...id, "status",

end editteam..d..cance).;

procedure editteam...designers (info :in taet~evet.evntcontext...ptr)
is

value : array (1. .1) of string (1. .tae_taeconf.STRINGSIZE);
count : taeint;

begin
text-.io.put ("Panel editteam, parm designers: value=
tae..vrn.Vm...ExtractCount (info.parm...ptr, count);
if count <= 0 then

text..io.put...line ("none");
else

tae..vm.VmR_ExtractSVAL. (i.nfo.parm..ptr, 1. value(l));
textjio.put...line (value Ci));

end if;
TaeWypt .Wpt_.SetString (sditteam....info.panel-id, "name",

value(l)(l..24));
designer(l..24) := value(l)(1..24);

Tae..Wpt.WptSetString(editteam..info.panel...id, "expertise",
value (1)(25. .30));

expertise_level(l..6) := value(l)(25..30);
Taej'Ipt .Wpt_.SetString (editteam..jnfo.panel~id, "status",

value~l) (44. .51));
designer_status(1..4) := value(l)(44..47);

end editteamn..designezs;

procedure editteam_selection_3 (info :in
tae...wpt .event...context...ptr) is

value : array (1..i) of string (l..tae...taeconf.STRINGSIZE);
count : taeint;

begin

text-io.put ("Panel editteam, parm selection..): value
tae..vm.Vzm Extract..Count (info.parm...ptr, count);
if count <= 0 then

text...io.putjline ("none");

386

else
tae...vm.VmExtract_SVAL (info.parrn..ptr, 1, value(1));

end if;
if (FALSE) then null;
elsif s...equal (value~i), "add designer") then

-- add designer to ddb
N'ame3(l. .24) :=designer(l. .24);
if expertise..level(l..3) = "low" then Name4(l) : 0=
end if;
if expertise~level(l. .3) = *med" then Name4(l) ''
end if;
if expertisejlevel(l. .3) ="hig" then Name4(l) ''
end if;

SELECTOR := 14;

ECS1;

taeywpt .Wpt..yanelReset (editteam..info.panel...id);

-- now read the new transfer file and update the TAE item

SELECTOR 13; -- remove transfer file
ECS1;
SELECTOR 15; -- write designer list to transfer file
ECSl;

put..line(*designer addition complete");

-- read in the designers from the transfer file (ddbdisplay) into
the editteam panel

text-.io.OPEN(data...file. text-io.IN..FILE, "ddbdisplay*);

counter :=1;

while not end-of-file(data..file) loop

get...line(data...file,designerjinfo(counter) .all, length);

TAE_ýWpt .WptSetStringConstraints (editteam_...nfo.panel_id

"designers", Taelnt (counter), designer...info);

387

counter :=counter + 1;

end loop;

text-io.CLOSE(datajfile);

for i in counter. .MAX...DESIGNERS loop

designer...info(i) .all

TAE..ypt .WptSetStringConstraints Ceditteamjinfo.paneljid

*designers", Taelnt (counter), designer...info);

end loop;

elsif s...equal (value(l), "delete designer") then
IName3(l..24) designer(l..24);
Name4(l..4) designer..status(l. .4);

if confirmý_info.panel...id = NULL_PANEL_ID then
tae_wpt.Wpt.jNewPanel ("*, confirmr_info.target,

confirm-info .view,
X_Windows.Null_Window, confirm_info,

tae...wpt .WPT_PREFERRED,
confirm_info.panel..Jd);

else
tae_wpt.Wpt_..SetPanelState

confirm_info.panel...id, tae..ypt.WPT...PREFERRED);
end if;

elsif s..equal (value(l), "change expertise level') then

-- update designer info in ddb

begin

NAME3(1..24) := designer(l..24);
if expertise...level(l. .3) = 'low' then Name4(l)

'0'; end if;
if expertise...level(l. .3) = 'med' then Name4(l)

l11; end if;
if expertise_level(1. .3) = 'hig' then Name4(l)

'2'; end if;

388

put~line(ocalling ECS");

SELECTOR :=17;
ECSl;

tae~ypt .WptPanelReset (editteamjk~nfo.panel-id);

-- now read the new transfer file and update the TAE Litem

SELECTOR 13; -- remove transfer file
ECSl;
SELECTOR 15; -- write designer list to transfer file
ECSl;

put...line(odesigner expertise modification comnplete*);

-- read in the designers from the transfer file (ddbdisplay) into

the editteam panel

counter := ;

while not end_of_file(datajfile) loop

get-line(data~file,designerjinfo(counter) .all, length);

TAE-Wpt .WptSetStringConstraints (editteamninfo.paneljid

Odesignerso, Taelnt (counter), designer~info);
counter :=counter + 1;

end loop;

for i in counter. .MAX_DESIGNERS loop

designerjinfo(i) .all

TAE.-.Wpt.Wpt-.SetStringConstraints (editteamjinfo.paneljid

"*designers", Taelnt (counter), designer...info);

389

end loop;

end;

elsif s~equal (value(l), oreturn to main menu*) then

tae...wpt .Wpt...PanelReset (editteam~info.panel..4d);

if not (editteam~info.panel.Jd = NULL_PANEL_..ID) then

edi;tae...wpt.WptPanelErase(info.panel-id); end if;

end edittearn_selection_3;

procedure confirm~yes (info :in tae...wpt.event~context...ptr) is
value :array (l..1) of string (l..tae~taeconf.STRINGSIZE);
count :taeint;

begin
text-..io.put (OPanel confirm, parm yes: value=
tae-vm.Vmr_Extract-Count (info.parm...ptr, count);
if count <= 0 then

text..io.put_line ("none");
else

tae-v.VirnExtractSVAL tinfo.parm..ptr, 1, value(l));
textjio.put~line (value(1));

end if;
tae...wpt .WptPanelErase (info .panel.....d);

-- remove designer from ddb

put-jine("calling ECS");

SELECTOR := 16;

ECS1;

tae...pt.WptP.anelReset(editteamý_info.panel..id);

-- clear the TAE panel items

Tae..ypt .Wpt..SetString(editteam_info.panel...id, "name",

Tae..Wp .Wt..ettigeitem)fopnld "eprts

Tae...Wpt.WptSetString(editteam-info.panel~id,"startuse",
a U);

390

-- read the new designer list from the transfer file

SELECTOR 13;
ECSl;
SELECTOR 15;
ECSl;

put~line(mdesigner deletion complete");

-- read in the designers from the transfer file (ddbdisplay) into
the editteam panel

text.-.io.OPEN(data-file, textjio.INLFILE, wddbdisplay,,);

counter :=1:

while not end~of...file(datajfile) loop

get~line(data..file,designer_info(counter) .all,length);

TAE_.Wpt .Wpt..SetStringConstraints (editteam...info.panel_id

"designers", Taelnt(counter), designer..jnfo);
counter :=counter + 1;

end loop;

text..jo.CLOSE(data-.file);

for i in counter. .MAX_DESIGNERS loop

designer...info(i) .all

TAE..Wpt.Wpt...SetStringConstraints (editteam..info.panel_id

"designers", Taelnt (counter), designerinf 0);

end loop;

end confirm..yes;

procedure confirm~no (info: in tae~wpt.event..context...ptr) is

391

begin

put,.jine(Ocancelling designer deletion*);

- - do nothing
tae_wpt.Wpt_PanelErase Cinfo.panel~id);

end confirmr_no;

procedure s~selects_s-elect-item (info :in
tae...wpt .event~context~ptr) is

value :array (1.-1) of taeint;
count :taeint;

begin
text-io.put ("Panel s_select, parm s..select.~.item: value

tae..vm.Vmq_Extract_Count (info.parm~ptr, count);
if count <= 0 then

textjio.put..line ("none");
else

tae.VlwVm.Extract-.IVAL (info.parm...ptr, 1, value(l));
text..io.putjline (taeintlimage(value(1W;

taeint_io.put(Name3, (value(l)));

end if;

put...line(Ocalling ECS");

ECSl;

put~..line(*ECS operation complete");

tae_wpt.Wpt..yanelErase(info.panel...id);
end s-select_s_select...item;

procedure showstep...s_select_item (info :in
tae...wpt.event context~ptr) is

value :array (1. .1) of taeint;
count :taeint;

begin
text-io.put (*Panel showstep, parm s_select~item: value=

tae_vm.Vmr_Extract...Count (info.parm..ptr, count);

392

if count <= 0 then
text~io.put-line ("none*);

else
tae_vm.Vm_Extract...IVAL (info.parm-ptr, 1, value(l));
text...io.put~line (taeintlizage(value(l)));

end if;

step~number :=integer(value(l));
SELECTOR :=3;
ECS1; -- this creates a file called Iddbdisplay' and puts all the

step
-- info in the file

CLEARSTEP..JNFO;

-- now create the new window

taewpt.Wpt_PanelErase(showstepjinfo.panel..id);
if show~.info.panel...id = NULLPANEL..ID then

tae..wpt .WptNewPanel (00, show~info. target,
show_info.view,

XWindows.N'ullWindow, show,_info,
tae..ypt .WPT_PREFERRED,

showý_info.paneljid);
else

tae..ypt .Wpt_.Set PanelState

edi;showjinf0. panel-id, tae...wpt .WPT..PREFERRED);

-- make sure that the panel items are cleared

for i in 1. .MAXSEC_INPUTS loop

TAEWypt .Wpt_.SetStringConstraints (show..info.panel~id,
"sec...input", Taelnt (i),

secondary.Jinputs);

TAE_Wpt .Wpt...SetStringConstraints (show._info.panel~id,
"affectedo, Taelnt(i), affected...modules);

end loop;
Taeypt .WptSetString(showý_info.panel..id, "base..version',

base-version);
Tae...Wpt .Wpt...Setlntg(showjinfo.panel id, "est_duration',

Taeint (est-.durat ion));

393

TaeWpt .WptSetString(show...info.panel~id. "exp~jevel".
expertise_level);

TaeWpt.WptSitlntg(show.Jnfo.panel~id. "priority",
Taeint (priority));

TaeWpt.WptSetString(show...info.panel...id. designer",
designer);

Tae_.Wpt .Wpt...SetString(show...info.panel..id. "deadline",
deadline);

TaejAWpt .WptSetString(showjinfo-panel..id, "start_time",
start-.time);

TaeyWpt-.WptSetString(show._.info.panel...id, "finish_time",
finish-..time);

Tae_Wpt .'Jpt_.SetString(show...info.panel...d, "pri~input",
priznary...input);

Tae_Wpt .WptSetIntg(show..info.panel...id, step~nurbero,
taeint (step...number));

Tae...Wpt .Wpt..SetString(show..jnfo.p~nel..id. "sub_steps",
sub..steps);

TaejJpt .WptSetString (showjinfo.-panel..id. "predecessors".
predecessors);

-- read from file created by ECSl into TAE variables
-- for display in show, panel.

text_io.put...line("opening file");

text-io .OPEN(data...file,

text-io.IN..JILE, "ddbdisplay");

text...io.put~line(oreading from file");

textjio.get_line(data_file,base_.version, length);
for i in length+l. .64 loop

end loop;
get (data...file, est_duration);
skipjline (data~file);
get (datajfile,priority);
skip~line(data...file);

text...io.getjline(data_file,expertise_level,length);
for i in length+l. .24 loop

expertise..level(i):='
end loop;
text..io.get-line(data..file,status,length);
for i in length+l. .24 loop

394

status(i):= 1;
end loop;
text..io.get~jine(data_file,.designer,length);
for i in length~l. .24 loop

designer(i):= ;

end loop;
text io.get.~.line(data~file,deadline. length);
for i in length+l. .24 loop

deadline(i):= ;

end loop;
text..io.get_line(data_file,start~time,length);

for i in length+l. .24 loop
start...timne(i):= ;

end loop;
text..io.get...line(data_file,finish_tirne~length);

for i in length~l. .24 loop
finish...time(i):=

end loop;
text...io.get...line(data..file~primar-y..input,,length);

for i in length+l. .64 loop
primary...input(i):=' '

end loop;

-- read number of secondary inputs followed by secondary inputs

get(data-.file,counter); skipjline(data-file);
if counter > 0 the.'i
for i in 1. .counter loop

text~io.get~line(data.file,secondary..Jnputs(i) .all,leng
th);

for j in length~4l. .64 loop
secondary..inputs(i)(j):= ;

end loop;

TAE_Wpt.Wpt...SetStringConstraints(show_info.panel-id,
"-secjinput", Taelnt (i),

secondary...inputs);

end loop;
end if;

ri ow read number of affected modules followed by affectecd
modules

get(data...file,counter); skipjline(data-file);

395

if counter >0 then
for i in 1. .counter loop

text...io.get_line(data_file,affected-rrodules(i) .all,leng
th);

for j in length+l. .64 loop
affected-modules(i)(j):='

end loop;

TAEWpt.Wpt..SetStringConstraints(show_.*nfo.panel_id,
"*affected', Taelnt(i), affected_modules);

end loop;
end if;

get (data-file, counter);
if counter > 0 then skipjline(data_file);

get,..line(data~file, sub~steps, length);
else skip..jine(data_file);

end if;

get (data...file, counter);
if counter > 0 then skip...line(data_file);

get..line(data..file,predecessors, length);
enid if;

text_io.put...line("done reading, writing to panel");

text_io.put..line("done writing to panel, closing file");

text-io.CLOSE(data-file);

-- now write all the new step information into the TAE window

Tae_..Wpt .WpcSetString(show..Jnfo.panel~id, "base_version",
base-version);

Tae_..Wpt.WptSetlntg(show_info.paneljid, "est_duration",
Taeint(est-duration));

TaeWpt.WptSetString(show~info.panel~id, "expjlevel",
expertise_level);

Taej'Jpt.Wpt...Setlntg(show-info.paneljid, "priority",
Taeint (priority));

TaeWpt.Wpt,..SetString(show~info.panel..id, "designer",
designer);

TaeyWpt.Wpt_.SetString(show..jnfo.panel~id, "deadline",

396

deadline);
TaejDWpt .Wpt...SetString~show...info.panel..id, start.Sirne",

start-time);
Taeypt .WptSetString(showý_info.panel...id. finish.*timel,

finish.Sime);
Tae..Wpt .Wpt_..SetString(show...infc.paneljid, pri..jnput',

primary..input);
Tae_.Wpt .WptSetlntg(show__info.panel~id, step..numberl,

value (1));
TaeyWpt .Wpt-.SetString(show..info.panel...id, "sub...steps",

sub..steps);
Taej'Jpt .WptSetString(show...info.paneljid, *predecessors",

predecessors);

except ion

when text-.io.NAME..ERROR =>
text...io.putjline(uERROR: non-existent transfer file

(probably 'ddbdisplay').*);
when text..io.END...ERROR =>

text...io.put...line(WERROR: corrupt transfer file
(probably Iddbdisplay')O;

if is..open(data..file) then close(data_file); end if;
when text-io.STATUTS-ERROR =>

if is-open(data...file) then close(data_file); end if;

end showstep..s~select...item;

procedure show~.step..nuxnber (info: in taewpt.event...context...ptr)
is

begin

null;

end show..step~number;

procedure show~show,_finish (info :in tae_wpt.event_context~ptr)
is

value :array (1. .1) of string (1. .tae..taeconf.STRINGSIZE);
count :taeint;

begin
text-io.put (*Panel show, parm show._finish: value
tae...vm.VmExtract_.Count (info.parm~ptr, count);

397

if count <= 0 then
text~io.put..line ("none*);

else
tae..ym.Vm.._Extract-.SVAL (info.parm...ptr, 1, value(l));
text_io.put...line (value(l));

end if;
tae..ypt .Wpt-PanelErase(info.panel~id);

end show_showý_finish;

procedure text 1-.di splay~done (info :in tae~wpt.event~context~ptr)
is

begin

SELECTOR := 13; -- this selection erases the transfer file
-- (currently 'ddbdisplay') for its next use

ECSl;

tae..wpt .Wpt..PanelErase (info .panel~id);

end text l..display...done;

procedure texti1_t ext~itemj1 (info :in tae...wpt.event...context...ptr)

is

begin

null;

end textl-text-itemn,..1;

procedure steptype...type..selection (info :in
tae...wpt.event_context.Jptr) is

value :array (l..l) of string (l..tae_taeconf.STRIMGSIZE);
count :taeint;

begin
SELECTOR :=2;

text-io.put ("Panel steptype, parnm type...selection: value

tae...m.VmR_Extract-Count (info.parm..ptr, count);
if count <= 0 then

text~..io.put~line ("none");
else

tae~v.VmrkExtract-SVAL (info.parm...ptr, 1, value(l));

398

text...io.put..line (valuell));
end if;
if (FALSE) then null;
elsif s~.equal (value(l), *all*) then

Name3(l. .3) :="all*;
for i in 4. .64 loop

Name3(i):=';
end loop;

ECS1;
if info.panel_id = NULLPANELID then

tae..wpt.WptNewPanel (-", info.target, info.view,
X_Windows.Null_ Window, info, tae..wpt .WPT_.INVISIBLE,

info. panel..id);
else

tae_wpt.Wpt...SetPanelState
info.panel..id, tae..wpt.WPT_.INVISIBLE);

end if;
if textl..info.panel...id = NULL...PANEL_.ID then

taeywpt .Wptj_1ewPanel (00, textl~info .target,
text linfo .view,

X..Windows .Null..yindow, text 1.info,
tae...wpt .WPT...PREFERRED,

textl_info.panel~id);
else

tae_wpt.Wpt_SetPanelState
textl_info.panel~id, tae_wpt .WPTPREFERRED);

end if;
elsif s...equal (value(l), wtopm) then

Name3(I. .3) :="top-;
for i in 4. .64 loop

Name3(i):= ;

end loop;
ECSl;

if info.panel_id = NULLPANEL_ID then
tae-wpt.Wpt..NewPanel (00, info.target, info.view,

XWyindows .NullWindow, info, tae~ypt .WPTINVISIBLE,
info.panel-d};

else

info.panel...id, tae..ypt.WPT-INVISIBLE);
end if;
if textljinfo.panel~id = NULL...PANELID then

tae_wpt .WptNewPanel (08, textljinfo.target,
textl-info.view,

X._ylindows .Null_Window, textl..info,
tae...pt .WPT__PREFERRED,

399

texti_info.panel...id);
else

tae...wpt .Wpt...Set PanelState
textl..info.panel...id, tae~ypt .WPT..PREFERRED);

end if;
elsif s...equal (value(l), *proposed") then

Name3Cl. .8) : proposedw;
for i in 9. .64 loop

Name3(i):= ;

end loop;
ECSl;

if info.panel...id = NULL_PANEL_ID then
tae_wpt.Wpt_NewPanel (0, info.target, info.view,

X_Windows.Null_Window, info, taeywpt.WPT_.INVISYBLE,
info.panel...id);

else
tae...wpt .Wpt_.SetPanelState

end if;
if texti_info.panel_id = NULL_..PANEL...ID then

cae..wpt .WptNewPanel (00, textl..info .target,
texti-..info .view,

X..Windows .NullWindow, texti_info,
taeywpt .WPT_PREFERRED,

textl_info.panel..id);
else

tae...wpt .Wpt...Set PanelState
textl~info .panel...id, tae..wpt .WPT...PREFERRED);

end if;
elsif s...equal (value(l), "approved*f) then

Name3(l. .8) := *approved";
for i in 9. .64 loop

Nazne3(i):=' I

end loop;
ECSl;

if info.panel...id =NULL_.PANEL..1D then
tae_wpt.W.ptNewPanel (00, info.target, info.view,

XJ'Jindows.Null__Window, info, tae~wpt.WPT...INVISIBLE,
info.panel..id);

else
tae...wpt.Wpt_SetPanelState

info.paneljid, tae..ypt.WPT...INVISIBLE);
end if;
if textl..info.panel...id = NULL...PANEL_.ID then

tae...wpt .Wpt_.NewPanel (""~, textl~info. target,
text l-.info .view,

400

X...Windows .Null-Window, textlkinfo,

tae~wpt .WPT.._PREFERRED,
textl...info.paflel...id);

else
tae..wpt .Wpt...SetPanelState

textl...info.panel...id, tae~.wpt .WPT..yREFERRED);

end if;
elsif s..equal (value(l), *scheduled*) then

Narne3(l. .9) : scheduledm;
for i in 10. .64 loop

Name3(i):= ;

end loop;
ECS1;

if info.panel_id = NULL_.PANELID then

tae~wpt.Wpt...NewPanel (**, info.target, info.view,

X_.Windows .Null_.Window, info, tae~wpt .WPT_INVISIBLE,

info.panel-.id);
else

tae~wpt .Wpt...SetPanelState
info.panel...id. taewpt.WPT...INVISIBLE);

end if;
if textl...info.panel...id = NULL_..PANEL...ID then

tae...wpt.WptNewPanel (00~, textl_info.target,

textl1info. view,
X..yindows .Null__Window, text 1_info,

tae-wpt .WPTPREFERRED,
textl...info .panel...id);

else
tae...wpt .Wpt...Set PanelState

textl~info.panel...id, tae...wpt.WPT...PREFERRED);
end if;

elsif s~equal (value(1), *assigned") then

Name3(l. .8) := "assigneds;
for i in 9. .64 loop

Nal1i733i):=1 1;
end lop

ECS1;
if info.panel_id = NULL_PANELID then

tae...wpt.Wpt...NewPanel (*I-, info.target, info.view,

X_ýWindows.Null...Wifldow, info, tae..wpt.WPT_INVISIBLE,
info.paneljid);

else
tae...wpt .Wpt...Set PanelState

info.panel-id, tae_wpt.WPT..JNVISIBLE);
end if;
if textl..info.panel...id = NTJLL..YANEL_ID then

401

tae..wpt .WptNewPanel ("N, textl-info.target,
textl-.info .view,

XWindows .Null...Window, textl-info,
tae~wpt .WPT_PREFERRED.

textl_info-parnel-id);
else

tae..ypt .WotSetPanelState
texti_info.panel~id, tae...wpt .WPT...PREFERRED);

end if;
elsif s...equal (value~i), "completedo) then

Name3(l. .9) := completedw;
for i in 10. .64 loop

Name3(i):= ;

end loop;
ECSl;

if info.panel...id = NULL...PANELID then
tae_wpt.Wpt_NewPanel (00, infc.target, info.view,

X..Windows .NullWindow, info, tae..ypt .WPT_INVISIBLE,
info.panel~id);

else
tae9_wpt.Wpt..SetPanelState

info.panel...id, tae...wpt.WPT_.INVISIBLE);
end if;
if textl~info.panel-id = NULLPANEL_ID then

tae~wpt .Wpt_NewPanel (00, textljinfo. target,
tex l-info.view,

X_Windows .Null..yindow, textl..info,
tae..wpt .WPT...PREFERRED,

textl_info.panel...id);
else

tae...wpt.Wpt_SetPanelState
textl_info.panel...id, tae...wpt .WPTý_PREFERRED);

end if;
elsif s...equal (value(l), "abandoned,) then

Name3(l. .9) := mabandoned";
for i in 10. .64 loop

end loop;
ECSl;

if info.paneljid = NULL_PANEL_ID then
tde_wpt.Wpt_NewPanel (00, info.target, info.view,

XWindows .Null_Window, info, tae..ypt .WPTI.NVISIBLE,
info.panel-id);

else
tae..wpt .Wpt...SetPanelState

info.panel~id, tae...wpt.WPT_.INVISIBLE);

402

end if;
if textl..info.paneljid = NULLPANELID then

tae...wpt .WptNewPanel (00, text l~info target,
text l-.info .view,

XWindows .Nullj'Jindow, text l-.info,
tae..wpt.WPT...PREFERRED,

textl...info.panel~id);
else

tae...wpt .Wpt-Set PanelState
textl..info .panel...id, tae..ypt .WPTPREFERRED);

end if;
end if;

end steptype~type..,selection;

procedure editnumns~select...item (info :in
tae_wpt.event...context~ptr) is

value :array (1. .1) of taeint;
count :taeint;

begin
text-io.put ("Panel editnum, parmi s..select..item: value
tae_ymVmqExtractCount (info.parm~ptr, count);
if count <= 0 then

else
tae_vm.Vm_Extract,..IVAL (info.parm...ptr, 1, value(l));

end if;

-- write step info to transfer file

taeint-io.put(Name3, (value(1)));
step...number :=integer(value(l));
SELECTOR := 3;
ECSl;
editing-or~creating := editing;
CLEAR_STEP_INFO;

-- create new panel

if editstep...info.panel~id = NULL_.PANEL_ID then
tae...wpt .Wpt..NewPanel ("*, editstep...info .target,

editstep...info .view,
X_Windows.Null_Window, editstep...info,

tae...wpt .WPT...PREFERRED,

403

editstep~info .panel~id);
else

taeywpt .Wpt-Set PanelState
editstep...nfo.paneljid, tae..ypt.WPT..yREFERRED);

end if;

-- make sure that the panel items are cleared

for i in 1. .MAX...SECINPUTS loop

TAE._Wpt .WptSetStringConstraints(editstepjinfo.panel~id

secondary~inputs);

TAE...Wpt .WptSetStringConstraints(editstep~info.panel~id

"affected", Taelnt (i), affected-.modules);

end loop;

TaejWpt .WptSetString(editstep..info.panel..jd, "base.ývers
ion",

base....ersion);
Tae_Wpt .WptSetlntg (editstep~info.panel_id, "est...duration",

Taeint (est~durat ion));
TaejJpt .WptSetString(editstep~info.panel id, "exp~level",

expertise-level);
Tae...Wpt .WptSetlntg (editstep...info.panel-id, "priority",

Taeint (priority));
TaeWpt.Wpt_SetString(editstepjinfo.panel id, "designer",

designer);
Tae..Wpt .WptSetString(editstep~info.panel~id, "deadline",

deadline);
TaeWpt.WptSetString(editstep~info.panel_id, "start_time",

start-.time);
Tae...Wpt.WptSetString(editstep~info.panel id, "finish..time",

finish-time);
TaeyWpt .Wpt...SetString (editstepjinfo.paneljid, "pri~input",

primary..input);
Tae..ypt .Wpt_Setlntg(editstep..info.panel id, "step~jiumber",

taeint (step...number));
Taeypt .WptSetString(editstep info.panel id, "sub~steps",

sub_steps);

404

Tae...Wpt .WptSetString (editstep-.info .panel...id, t predecess
ors",

predecessors);

-- now read the file

text_io.put~line(nopening file");

text-io .OPEN (data...file,

text~io.put...line(Oreading from filetm);

text~io.get..line(datajfile,base..version, length);
for i in lengthe1. .64 loop

base-version(i):= ;

end loop;
get (datajfile,est_duration);
skipjline(datajfile);
get (data...file,priority);
skip...line(data_file);

text...io.get_line(data~file,expertise~jevel,length);
for i in length+l. .24 loop

expertise...level(i) := '

end loop;
text..io.get..~line(data...file, status, length);
for i in length+l. .24 loop

status(i):= 1;
end loop;
text~io.get..line(data...file,designer. lengthi);
for i in length+1. .24 loop

designer(i):=' I

end loop;
textjio.get...line(data...file~deadline,length);
for i in length+1. .24 loop

deadline(i):=, ';

end loop;
text...io.get~line(data...file. start~time, length);

for i in length+l. .24 loop
start-..time(i):='

end loop;
textjio.get...line(data...file. finish..time, length);

for i in length+l. .24 loop

405

finish...tizne(i):= '

end loop;
text..io.get~line(data..file,primary_ irput,length);

for i in length+l. .64 loop
primary...input(i):= 1;

end loop;

-- read number of secondary inputs followed by secondary inputs

get(data..file,counter); skip...line(data...file);
if counter > 0 then
for i in 1. counter loop

text~io.get..jine(data_file,secondary...inputs(i) .all,leng
th);

for j in length+l. .64 loop
secondary...inputs~i)Cj):=' ;

end loop;

TAE...Wpt .Wpt..SetStringConstraints (editstep...info.panel..id

Osec...inputu, Taelnt(i),
secondary-inputs);

end loop;
end if;

-- now read number of affected modules followed by affectecd
modules

get Cdata..file,counter); skip...line(data...file);
if counter > 0 then
for i in 1. .counter loop

text..io.get~line(data~file,affected..modules(i) .all, leng
th);

for j in length+l. .64 loop
affected_modules(i)(j):= S

end loop;

TAEypt .Wpt_SetStringConstraints (editstep..info .panel...id

"affected", Taelnt(i), affected-..modules);
end loop;
end if;

406

get (data~file, counter);
if counter > 0 then skip..jine(data-file);

get...line(data-file, sub...steps, length);
else skip..jine(data...file);

end if;

get (data...file, counter);
if counter > 0 then skip~..line(data~file);

getjline(data...file,predecessors, length);

end if;

text~io.put_line("done reading, writing to panel*);

textjio.put~line("done writing to panel, closing file");

text...io.CLOSE(data-..file);

-- now write all the step information into the TAE window

Tae_Wpt .Wpt_SetStrin~g(editstep..info.panel..jd, "base..vers
ion",

base_version);
Tae_.ypt .Wpt_Setlntg (editstep~info.panel..id, "est~duration",

Taeint(est-duration));
Tae_.Wpt.WptSetString(editstep~info.panel...id, "exp~level",

expertise_level);
Tae~ypt .WptSetlntg(editstep..info.panel...id, "priority",

Taeint (priority));
TaeWpt .WptSetString (editstep..info.panel_id, "designer",

designer);
Tae_.Wpt .Wpt..SetString(editstep..info.panel...id, "deadline",

deadline);
Tae....pt .Wpt...SetString(editstep..info.panelkid, "start..tirne",

start_time);
TaeWypt .Wpt...SetString(editstep..info.panel..id, "finish-time",

finish-time);
Taej'Jpt .Wpt_.SetString(editstep..info.panel_id, "pri~input.",

primary...input);
Tae..ypt .WptSetlntg (editstepjinfo.panel-id, "step..nunmber",

value(l))
Tae...Wpt .Wpt_.SetString(editstep~info.panel~id, "sub..steps",

sub...steps);

407

Tae...Wpt.WptSetString(editstep...info.panel-id, 'predecess
ors*

predecessors);

exception

when text..jo.NAME...ERROR =>
'ext~io.putjline(*ERROR: non-existent transfer file

(probably 'ddbdisplay').*);
when text..io.END_ERROR =>

text...io.put_line("ERROR: corrupt transfer file
(probably Iddbdisplay').");

if is..open~data_file) then close(data...file); end if;
when text-io.STATUSERROR =>

if is_open(data_file) then close(data...file); end if;

end edixtnuxn..s~select...item;

- - END EVENT_HANDLERs

end ddb..interface...support;

- - ENDFILE: ddb-interface~support~body a

-- Main Program

begin

f-force..lower (FALSE); -- permit upper/lowercase file names

tae...ypt.Wpt-NewEvent (wptEvent);

initializePanels (oddb...interface.reso); -- single call

- - main event loop

EVENTý_LOOP:
loop

tae_wpt.Wpt...NextEvent (wptEvent, etype); -- get next
event

408

I

-- NOTE: This case statement includes STUBs for non-WPTPARMEVENT
events.

case etype is

when wpteventtype'first .. -1 => null;
-- iterate loop on WptNextEvent error

-- TYPICAL CASE: Panel Event (WPTPARMEVENT)

when tae_wpt.WPT._PARMEVENT =>
-- You can comnent out the following *put" call.

-- The appropriate EVENT_HANDLER finishes the message.
text-io.put (*Event: WPTPARMEVENT,

-- Panel event has occurred.
-- Get parm name and then call appropriate

EVENTHANDLER.

CAUTION:
-- DO NOT call WptExtract_Parm_xEvent from any

other branch
-- of this "case* statement or you'll get

"storageerrorO.

tae_wpt.WptExtract_Context (wptEvent, user._ptr);
tae.wpt.WptExtract_Parm (wptEvent°

user.ptr.parmname);
tae wpt .WptExtractData (wptEvent,

user..ptr.datavm._ptr);
tae_vm.Vm_Find (user__ptr.datavm__ptr,

user..ptr.parm_name,
user..ptr.parm_ptr);

-- dummy if to ease code generation
if (FALSE) then null;

-- WPTPARMEVENT, BEGIN panel main

elsif tae_wpt."=" (userptr, main-info) then
if (FALSE) then null; -- another dunmmy if

-- determine appropriate EVENTHANDLER for

this item
elsif s-equal (uselectionl"0

useroptr.parmname) then

409

ma in-selection_1 (user..ptr);
end if; -- END panel main

-- WPT_PARM_EVENT, BEGIN panel editstep

elsif tae..ypt."=" (user...ptr, editstep.~.info) then
if (FALSE) then null; -- another dum~ny if

- - determine appropriate EVENTý_HANDLER for
this item

elsif s...equal (obase...version",
user...ptr.parm-name) then

editstep~base..version (user...ptr);
elsif s...equal ("prijinput", user~ptr.parmr_name)

then
editstep~pri..input (user~ptr);

elsif s...equal ("predecessors",
user...ptr.parmý_name) then

edit step~predecessors (user...ptr);
elsif s_equal (*priority", user...ptr.parmnname)

then
editstep..priority (user..ptr);

elsif s..equal ("exp..level", user...ptr.parm_name)
then

editstep...expjlevel (user-ptr);
elsif s...equal ("deadline*, user~ptr.parm_name)

then
editstep.Aeadline (user~ptr);

elsif s-.equal ("est-duration",
user..ptr.parmq_name) then

editstep...est...duration (user...ptr);
elsif s...equal ("sec-input", user...ptr.parm...name)

then
editstep...sec...input (user...ptr);

elsif s..-equa1 (*affected", user~ptr.parmnname)
then

editstep...affected (user...ptr);
elsif s...equal ("return", user~ptr.parum_name)

then
editstep...return (user~ptr);

user~ptr.parm_name) then
editstep...apply~step (user...ptr);

elsif s-.equal ("cancel-step",
user..ptr.parm-name) then

editstep...cancel-step (user~ptr);
end if; -- END panel editstep

410

-- WPTJ'ARMEVENT, BEGIN panel editteamn

elsif tae...wpt."=4 (user...ptr, editteam..info) then
if (FALSE) then null; -- another dummry if

- - determine appropriate EVENTý_HANDLER for
this item

elsif s-..equal (uname", user~ptr.parm-name) then
editteamqnarne (user~ptr);

elsif s~equal (4ex~opt*, user...ptr.parm_name)
then

edit team...ex..opt (user-ptr);
elsif s-equal ("d...cancel", user...ptr.par'~...name)

then
editteamqd..cancel. (user-.ptr);

elsif s...equal ("designers", user...ptr.parm..name)
then

editteamR.designers (user,..ptr);

user..pr.parm...name) then
editteamrýselection_3 (user~ptr);

end if; -- END panel editteam

-- WPT_PARM_.EVENT, BEGIN panel confirm

elsif tae..ypt."=u (user...ptr, confirmk_info) then
if (FALSE) then null; -- another dummy if

-- determine appropriate EVENT_HANDLER for
this item

elsif s~equal. (myes", user~..ptr.parrmkname) then
confirm..yes (user...ptr);

elsi.f s...equal ("nom, user...ptr.parm-name) then
confirm~no (user..ptr);

end if; -- END panel confirm

-- WPT_.PAPI4_EVENT, BEGIN panel s~select

elsif tae-wpt."=o (user...ptr, s...select..Jnfo) then
if (FALSE) then null; -- another dummy if

- - determine appropriate EVENTJIANDLER for
this item

elsif s-..equal (us-.select-item",
user~ptr .parm...name) then

s-select-s-select-item (user..ptr);
end if; -- END panel s_select

411

- - WP'r..PARMEVENT, BEGIN panel showstep

elsif tae~wpt.Ow, (user...ptr, showstepjinfo) then
if (FALSE) then null; -- another dummy if

- - determine appropriate EVENL.HANDLER for
this item

elsif s...equal (os..select..item*,
user...ptr .parm..name) then

showstep...s..select_item (user...ptr);
end if; -- END panel showstep

- - WPTPA1U4..EVENT, BEGIN panel show

elsif taeywpt."= (user..ptr, show_info) then
if (FALSE) then null; -- another dummy if

- - determine appropriate EVENTHANDLER for
this item

elsif s_equal (ostep...nuxber",
user..ptr parm~name) then

showý_step..nuxnber (user...ptr);
elsif s-equal (ushow-finishTM ,

user...ptr .parm...name) then
show~show..finish (user..ptr);

end if; -- END panel show

-- WPTPARMLEVENT, BEGIN panel text 1

elsif tae-wpt."= (user..,ptr, textk..info) then
if (FALSE) then null; -- another dummy if

- - determine appropriate EVENTJIANDLER for
this item

elsif s-.equal (odisplay...doneo,
user..ptr parm...name) then

texti_display_done (user..ptr);
elsif s-equal (Otextjitem.V~l,

user..pt r parll~nazne) then
textl~text~itetmkl (user..ptr);

end if; -- END panel textl

-- WPT-PARM_EVENT, BEGIN panel steptype

elsif tae..w pt.*=- (user~ptr, steptype..info) then
if (FALSE) then null; -- another dummy if

- - determine appropriate EVENT_.HANDLER for
this item

elsif s~equal (stype...selectionTM,

412

U
user._ptr.parm_name) then

steptypetypeselection (userptr);
end if; -- END panel steptype

-- WPTPARMEVENT, BEGIN panel editnum

elsif tae wpt."=" (user_.ptr, editnuminfo) then
if (FALSE) then null; -- another dummy if

-- determine appropriate EVENTHANDLER for
this item

elsif s-equal (ss_selectitem",
user..ptr.parmname) then

editnumxs_selectitem (userptr);
end if; -- END panel editnum

else
textio.putline ("unexpected event from wpt!);

exit; -- or raise an exception, but compiler
warns if no exit

end if;

when tae.wpt.WPT_FILEEVENT =>
text_io.put_line ("STUB: Event

WPT_FILEEVENT");

-- Use WptAddEvent and WptRemoveEvent and
-- WptExtract_EventSource and

WptExtract_EventMask

when taewpt.WPT_TIMEOUTEVENT =>
textio.put-line ("STUB: Event

WPTTIMEOUTEVENT*);

-- Use WptSetTimeOut for this

-- LEAST LIKELY cases follow:

when tae_wpt.WPT_WINDOW_EVENT => null

-- WPT_WINDOWEVENT can be caused by user
acknowledgement

-- of a WptPanelMessage or windows which you
-- directly create with X (not TAE panels).

-- You MIGHT want to use WptExtract_xEventType
here.

413

-- DO NOT use WptExtractParm.._xEvent since
this is not

-- a WPTPARMEVENT; you'll get a "storage
error*.

when tae_wpt.WPT_HELPEVENT => -- OR null
text-io.put("ERROR: WPTHELPEVENT: ");

textio.putline(ashould never see; reserved
for TAE useu);

when t; wpt.WPTINTERRUPTEVENT => -- OR null
text-io.put(*ERROR: WPTINTERRUPTEVENT: W);

textio.putline(*should never see; reserved
for TAE use*);

when OTHERS =>
text-io.put (*FATAL ERROR: Unknown WptNextEvent

Event Type: *);

textio.put (wpteventtypelimage(etype)
textio.putline (v ... Forcing exit.");
exit; -- or raise an exception

end case; -- NOTE: Do not add statements between here
and "end loop EVENTLOOP"

end loop EVENTLOOP;

end ddb_interface;

414

I

D. TEST DATA AND TEST RESULTS

0;.:'.j;,EvotutiEn Can1Wl3 SyStiem::::,,:

Selection

Sshow prototypes

Sshow steps

Sshow step details

Sshow schedule

(create prototype
Screate step

Q edit step -3
Q edit team --
Q approve step

(schedule step

0 commit step

' suspend step

O abandon step

Oquit

FIGURE 33. Screen image of the ECS main menu (manager)

415

-3 3

i~ i

416

i0

A2 2-- is

4417

I 0

16

FIGURE 35. Screen image of step 1 details after it has been created

417

* 11

A

FIGRE 6. cren i ag ostp2dailafeithsbncrtd

418

II1I
i ,
09m

-A

FIGURE 37. Screen image of step 3 details after it has been created

419

'I I
Ao

1'

FIGURE 38. Screen image of step 4 details after it has been created

420

i
:0

I

*-!-

i'Si

0 8.110

FIGURE 39. Screen image of step 5 details after it has been created

421

II IIII~ illllllllnll

iii

""go

A 'ff.6

FIGURE 40. Screen image of step I details after it has been approved

422

WI-

'lo

4 423

a -L

Il "
3B

0 "r

I' n
FIUR 41 cen imaeo tp6dtis sbtpo tp

I I - 0

II

i +,--- -

FIUE4. ceni aeofste eal sbtpo tpl

42

0I

A

I '

0 0

8 -

0. a g
* I •1 i.

43..

lawu

FIGURE 4.Screen image of step 8 details (substep of step 1)

4 I2

I

I M

-fw
A A4

U" -

FIGURE 44. Image of step 2 details after it has been approved)

426

I M|

Lij

iil

II

FIGURE 4S. Image of step 9 details (substep of step 2)

427

I.'
.1

* m

i ,f

o
I.j

Ru 'U1

NoN

h9 w 91
2~

FIGURE 46. Image of step 10 details (substep of step 2)

i ~428

II

2i II

Ii
429

iti~s

I
I

U A
I NI

ijl
MMI.

2

FIGURE 48. Image of step 11 details (substep of step 4)

430

III

iti

AA

r13

if

FIGURE 49. Impg of step 12 details (substep of step 4)

431

I-I

Li

a0

U0AJ

1i 0

""I ,a 21

-il

FIGURE SO. Image of step 13 details (substep of step 4)

432

n-
i umni mii nnnmi i Il~m U wnIn I n In

FI

,! I;1go

L~Li

AO A.

FIGURE S$1. Screen image of step 6 after its completion

433

M • --.. • ,mm• nn mummmmmnmunmmum• S IN U i

I

i

iil* .2+

.11

.43

MJ za
0

~AL

S0

00a a$

434

IM C

I a

A As

FIUR S .Sre mg fse7atriscmlto
.43

I

*i |i ii I

a.-l I .;

Uf ;

4A M

v .1

00

FIUR S4_cre_ _ __ose_ atrit oplto

436_ _ _

~ *1

FIUE5.Sre mg fse 2atrtecmlto fse

43 __ __

:E

S I , I

S I ,

Ca

FIGURE S6. Screen image of step 3 after it has been scheduled

438

a * Nm a ||

I
S

-g

- I Ik.
- -

- g0 A. �
ita a

I.
0a

a.c U

St

�As *
�

a � 8.S
St i: �i a

. 0 &
8.I a

- S

9

- 5%

- - U . : �
�

- � As!
- .� :o

.- a
- E ! �

* � *� a 4 �.

-tjii�� �
1

FIGURE 57. Screen image of step 35 after it has been scheduled

439

0I
n!

-I

S..

. ~ ~ ~ ~ ~A

FIGURE 58. Screen image of step 3 after the completion of step 1

440

A

VII- LIST OF REFERENCES

HI] "Aide-de-Camp Software Management System Technical Reference
Guide", Software Maintenance & Development Systems INC. Version 7.21,
1991.

[21 Andreas Drexl, "Scheduling of Project Networks by Job Assignment",
Management Science, Vol. 37. No. 12, Dec. 1991, pp. 1590-1602.

[3 1 Arthur L. J., "Software Evolution - The Software Maintenance Challenge",
John Wiley and Sons, 1988.

[41 Badrinath B. R. and Ramamrithan K., "Semantics-Based Concurrency
Control: Beyond Commutativity", ACM Trans. on Database Systems Vol.
17, NO 1, March 1992.

1 5 1 Badr Salah and Luqi, "A Version and Configuration Model for Software
Evolution", Proceedings of the Fifth International Conference on Software
Engineering and Knowledge Engineering (SEKE'93), San Francisco Bay,
June 16-18, 1993. pp.225-227

16] Badr S. and Berzins V., "A Design Management and Job Assignment
System", Technical Report, Computer Science Department, Naval
Postgraduate School, NPS-CS-020-1992

[7 Baker K. R., Su Zaw-Sing, "Sequencing with Due-Dates and Early Start
Times to Minimize Maximum Tardiness", Naval Research Logistic
Quarterly, Vol. 21, NO. 1, March 1974. pp. 171-176.

[8 Balas E. and Saltzman M. "An Algorithm For The Three-Index Assignment
Problem", Operations Research, vol. 39, No. 1, Jan.-Feb. 1991.

[9] Barghouti N. S. and Kaiser G. E., "Concurrency Control in Advanced
Database Applications", ACM Computing Surveys, Vol. 23, No. 3,
September 1991. pp. 269-317.

[10 1 Bean J., Birge J., Mittenthal J., and Noon C., "Matchup Scheduling with
Multiple Resources release Dates and Disruptions", Operations Research,
vol. 39, No. 3, May-June 1991.

[11] Berzins and Luqi, "Software Engineering with Abstractions", Addison-
Wesley 1990

[12 Bezalel Gavish and Hasan Pirkul, "Algorithms for The Multi-Resource
Generalized Assignment Problem", Management Science, Vol. 37. No. 6,
Dec. 1991, pp. 695-713.

441

• -- -- .• m m mmmm mmmm m mm|rammm mmm mmlmmm

I
[13] Biyabani S. R., Stankovic J. A., Ramamritham k., "The Integration of

Deadline and Criticalness in Hard Real-Time Scheduling". Real-Time
Systems Workshop, May 1988.

[14 Borison E., "A Model of Software Manufacture". Proceedings of the
international workshop, Trondheim, Norway, June 1986, pp. 197-220.

(15 1 Bratley P., Florian M., Robillard P., "Scheduling with Earliest Start and Due
Date Constraints", Naval Research Logistic Quarterly, Vol. 18, NO. 4,
December 1971. pp. 511-519.

[16 1 Campbell R. H., Terwilliger R. B. "The SAGA Approach to Automated
Project Management", in Advanced Programming Environment, Springer-
Verlag, 1986, pp. 142-155.

[17 1 Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli, "Fundamentals of
Software Engineering", Printice Hall, 1991.

[18 1 Cheng S., Stankovic J. A., Ramamritham K., "Scheduling Algorithms for
Hard Real-Time Systems - A Brief Survey", COINS Technical Report 87-55,
Dept. of Computer and Information Science, University of Massachusetts,
June 1987.

[19] Coffman E. G., "Computer and Job-Shop Scheduling Theory", John Wiley &
Sons 1976.

[20] Cohen E. S., Soni D. A., Gluecker R., Hasling W. M., Schwanke R. W., and
Wagner M. E., "Version Management in Gypsy", Proceedings of the ACM
SIGSOFT/SIGPLAN, Nov. 28-30, 1988. pp. 201-215.

[21] Colin J. and Chretienne P., "C. P. M. Scheduling with Small Communication
Delays and Task Duplication", Operations Research, vol. 39, No. 4, July-
Aug. 1991.

[22] Dampier D., "A Model for Merging Different Versions of a PSDL Program",
MS thesis, Computer Science Department, Naval Postgraduate School, June
1990.

[23] Dampier D., Luqi, "A Model for Merging Software Prototypes", Technical
Report, NPS CS-92-014.

[24] Falkenberg B., "Configuration Management in a Large (SW) Development",
Proceedings of 2nd International Workshop on Software Configuration
Management, Princeton, New Jersey, Oct. 24,1989. pp. 34-37.

[25] Fan B. H., "Evaluations of Some Scheduling Algorithms for Hard Real-Time
Systems" MS thesis, Computer Science Department, Naval Postgraduate
School, June 1990.

442

a
[261 Feller P. H., "Configuration Management Models in Commercial

Environments", Technical Report CMU-9 1-TR-7, ESD-91 -TR-7. 1991.

[27] Feldman S. I., "Software Configuration Management: Past Uses and Future
Challenges" Proceedings of 3rd European Software Engineering Conference,
ESEC '91, Milan, Italy, October 1991

1 28 1 Fischetti M., Marteilo S. and Toth P. "The Fixed Job Scheduling Problem
with Spread Time Constraints", Operations Research, vol. 35, No. 6. Nov.-
Dec. 1987.

[29] Grady R. B., "Measuring and Managing Software Maintenance", IEEE
Software, Sept. 1987, pp. 35-45.

[30] Gustafson D. A., et al, "Software Maintenance Models", Software
Maintenance and Computers, IEEE Computer Society Press Tutorial, 1990.
pp.23-35.

[311 Gustavsson A., "Maintaining the Evolution of Software Objects in an
Integrated Environment", Proceedings of 2nd International Workshop on
Software Configuration Management, Princeton, New Jersey, Oct. 24,1989.
pp. 114-117.

[32] Heimbigner D. and Krane S., "A Graph Transform Model for Configuration
Management Environments", Proceedings of the ACM SIGSOFT/
SIGPLAN, Nov. 28-30, 1988. pp. 216-225.

[33 1 Hillier & Lieberman., "Introduction to Operation Research", fourth Edition,
1986.

[34 1 Hong K. and Leung J., "On-Line Scheduling of Real-Time Tasks" Real-Time
Systems Workshop, May 1988.

[35] Horn W. A., "Some Simple Scheduling Algorithms" Naval Research
Logistic Quarterly, Vol. 21, NO. 1, March 1974. pp. 177-185.

[36 1 "IEEE Guide to Software Configuration Management", Std 1042-1987,
American National Standards Institute/IEEE, New York, 1988.

[37 1 Kaiser G. E., and Perry D. E., "Workspaces and Experimental Databases:
Automated Support for Software Maintenance and Evolution", Proceedings
of IEEE Conference on Software Maintenance 1987. pp. 108-114.

[38 1 Kaiser G. E., and Perry D. E., and Schell W. M., "Infuse: Fusing Integration
Test Management with Change Management", Proceedings of the Thirteenth
Annual International Computer Software & Applications Conference,
Orlando, FL, September 20-22, 1989.

443

U
[39] Kate R. H., "Toward a Unified Framework for Version Modeling in

Engineering Databases", ACM Computing Surveys, VOL. 22, NO. 4,
December 1990.

[40] Ketabchi M. and Berzins V., "Generalization per Category: Theory and
Application", Proceedings Int. Conf. on Information Systems, 1986.

(411 Ketabchi M. A., "On the Management of Computer Aided Design
Database", Ph. D. Dissertation, University of Minnesota, Nov. 1985.

(42] Lacroix M. and Lavency P., "The Change Request Process", Proceedings of
2nd International Workshop on Software Configuration Management,
Princeton, New Jersey, Oct. 24,1989. pp. 122-125.

[43] Leung Joseph Y-T., Young G. H., "Preemptive Scheduling to Minimize
Mean Weighted Flow Tune", Technical Report: UTDCS-1-87.

[44] Leung Joseph Y-T., Young G. H., "Minimizing Schedule Length Subject to
Minimum Plow Time", Technical Report: UTDCS-9-87.

[45] Leung Joseph Y-T., Young G. H., "Minimizing Total Tardiness On a Single
Machine with Precedence Constraints", Technical Report: UTDCS-4-89.

[46 1 Levine J., "An Efficient Heuristic Scheduler for Hard Real-Time Systems",
Master's Thesis, Naval Postgraduate School, Monterey, California, Sept.
1991.

[47] Lie A. et al, "Change Oriented Versioning in a Software Engineering
Database", Proceedings of 2nd International Workshop on Software
Configuration Management, Princeton, New Jersey, Oct. 24,1989. pp. 56-65.

[48 1 Liu L., and Horowitz E., "Object Database Support for a Software Project
Management Environment", Proceedings of the ACM SIGSOFT/SIGPLAN,
Nov. 28-30, 1988. pp. 85-96.

[49 1 Lobba A., "Automated Configuration Management", Proceedings of IEEE
conference on Software Tools 1987. pp. 100-103.

(50 Longstreet D. H., "Software Maintenance Management", Software
Maintenance and Computerr, IEEE Computer Society Press Tutorial, 19.90.
pp. 85-89.

[51] Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer 22,
5. May 1989, pp 13-25.

[52] Luqi, "A Graph Model for Software Evolution", IEEE Transaction on
Software Engineering. Vol. 16. NO. 8. Aug. 1990. pp. 917-927.

[53] Luqi and Ketabchi M., "A Computer-Aided Prototyping System", IEEE
Software, Mar. 1988. pp. 66-72.

444

[54 1 Luqi and Berzins V., "Rapidly Prototyping Real-Time Systems", IEEE
Software, Sept. 1988. pp. 25-36.

[55] Madhavji N., "The Prism Model of Changes", Proceedings of 13th
International Conference on Software Engineering, May 13-17, 1991-Austin,
Texas, USA. pp. 166-177.

[56 Moquin B., "Software Configuration Management Tools: ChangL,
Management vs. Change Control", Proceedings of IEEE Phoenix Conference
on Computers and Communications, 1985, pp. 97-100.

1 57 1 Mostov I., "A Model of Software Maintenance for Large Scale Military
Systems", Master's Thesis, Naval Postgraduate School, Monterey,
California, June. 1990.

[58] Mostov I., Luqi. and Hefner K., "A Graph Model for Software
Maintenance", Tech. Rep. NPS52-90-014, Computer Science Department,
Naval Postgraduate School, Aug. 1989.

[59] Narayanaswamy K. and Scacchi W., "Maintaining Configuration of Evolving
Software System", IEEE Trans. on Software Eng. SE-13,3. Mar. 1987, pp.
324-334.

[60 1 Nelson et. al "Clustering, Concurrency control, Crash recovery, Garbage
collection, and Security in OODBMS", NPS-Tech. Report Feb. 1991. pp. 5-

[611 Nester J. R., "Toward a Persistent Object Base" Technical Memorandum,
SEI-86-TM-8, Software Engineering Institute, Caregie-Mellon University
July 1986

[62] Nester J. R., "Views for Evolution in Programming Environments",
Presented at FeaCase '89, Integrated Data Management for Software
Engineering, Nov 1989.

[63] "Ontos DB 2.2 Reference Manual, Volume I Class and Function Libraries",
Ontos INC. Release 2.2, 1992.

[64 1 "Ontos DB 2.2 Developer' s Guide", Ontos INC. Release 2.2, 1992

f 65 Perry D. E., and Kaiser G. E., "Infuse: A Tool for Automatically Managing
and Coordinating Source Changes in Large Systems", Proceedings of the
1987 ACM Fifteenth Annual Computer Science Conference. St Louis,
Missouri, February 1987. pp 292-299.

[66 1 Perry D. E., and Kaiser G. E., "Models of Software Development
Environments", IEEE Transactions on Software Engineering, Vol. 17, NO. 3,
March 1991.

445

I
[67] Ramamritham K., Stankovic J. A., Shiah P., "Efficient Scheduling Algorithm

for Real-Time Multiprocessor Systems", COINS Technical Report 89-37,
Dept. of Computer and Information Science, University of Massachusetts,
1989.

[68] Rullo T. A., "Advances in Computer Programming Management", Vol. 1.
Heyden Advances Library in EDP Management, 1980. pp. 152-186.

(691 Schneidewind N. F, "The State of Software Maintenance", IEEE
Transaction on Software Engineering. Vol. SE-13, NO. 3. March 1987. pp.
303-310.

(70] Simmonds Ian, "Configuration Management in the PACT Software
Engineering Environment", Proceedings of 2nd International Workshop on
Software Configuration Management, Princeton, New Jersey, Oct. 24,1989.
pp. 118-121.

[71] Sommerville Ian "Software Engineering", Fourth edition, Addison-Wesley
1992

[72 1 Stankovic J. A., Ramaniritham K., Shiah P., and Zhao W., "Real-rime
Scheduling Algorithms for Multiprocessors", COINS Technical Report 89-
47.

[73 1 Thomas Ian, Penedo M. H., and Ploedereder E., "Object Management Issues
for Software Engineering Environments - Workshop Report-", Proceedings
of the ACM SIGSOFT/SIGPLAN, Nov. 28-30, 1988. pp. 226-234.

[74] Thomas Ian, "Version and Configuration Management on Software
Engineering Database", Proceedings of 2nd International Workshop on
Software Configuration Management, Princeton, New Jersey, Oct. 24,1989.
pp. 23-25.

[751 Tichy W. F., "RCS- A System for Version Control". Software Practice and
Experience, VOL. 15 (7), July 1985. pp 637- 654.

[76] Tichy W. F., "Tools for Software Configuration Management", International
Workshop on Software Version and Configuration Management", Grassau,
FRG 27-29 January 1988.

[77] Van Tilburg R. L., "Software Configuration Management An Update",
Proceedings of IEEE Phoenix Conference on Computers and
Communications, 1985, pp. 97-100.

[78] William B. Franks, C. J. Fox, and B. A. Nejmeh, "Software Engineering in
the UNIX/C Environment", Prentice Hall 1991

[79] Won Kim and Lochovsky F "Object-Oriented Concepts, Databases, and
Applications", ACM Press, Addison-Wesley, 1989.

446

(80 1 Ware Myers, "Allow Plenty of Time for Large-Scale Software", IEEE
Software, July 1989.

[81] Silberschatz A., Stonebraker M., and Ullman J., "Database Systems:
Achievements and Opportunities", Communication of the ACM, October
1991/Vol. 34, No. 10, pp. 110-120.

[82] Xu Jia, Parnas D., " Scheduling Processes with Release Times, Deadlines,
Precedence, and Execlution Relations", IEEE Transactions on Software
Engineering, Vol. 16, No. 3, March 1990.

[83 1 Xu JiLa., "On Satisfying Timing Constraints in Hard-Real-Time Systems",
IEEE Transactions on Software Engineering, Vol. 19, No. 1, January 1993.

[84] Xu Jia., "Multiprocessor Scheduling of Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations", IEEE Transactions on
Software Engineering, Vol. 19, No. 2, February 1993.

[85) Zdonik Stanley B. "Version Management in an Object-Oriented Database"
Proceedings of an international workshop, Trondheim, Norway, June 1986,
pp.405-422.

[86 1 Zhao W., Ramamritham K., Stankovic J. A., "Scheduling Tasks with
Resource Requirements in Hard Real-lime Systems", IEEE Transactions on
Software Engineering, Vol. SE-13, NO. 5, May 1987, pp. 564-576.

447

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Zzation
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2

Code 52
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Department of Computer Science

Code CS
Naval Postgraduate School
Monterey, California 93943

4. Computer Technology Programs
Code 37
Naval Postgraduate School
Monterey, California 93943

7. Military Technical College (Egypt) 2

c/o American Embassy (Cairo, Egypt)
Office of Military Cooqjeration
Box 29 (TNG)
FPO, NY 09527-0051

8. Military Research Center (Egypt) 2

c/o American Embassy (Cairo, Egypt)
Office of Military Cooperation
Box 29 (TNG)
FPO, NY 09527-0051

8. Armament Authority-training Department (Egypt) 5
c/o American Embassy (Cairo, Egypt)
Office of Military Cooperation
Box 29 (TNG)
FPO, NY 09527-0051

448

9. Professor Vadis Berzins, Code CS/Bz 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

10. Professor Luqi, Code CS/Lq 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

11. Professor Jon Butler, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

12. Professor Mantak Shing
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

12. Professor Yuh-Jeng Lee
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

13. Professor R. B. Mcghee
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

14. Professor Tarek Abdel-Hamid
Administrative Science Department, Code AS
Naval Postgraduate School
Monterey, CA 93943

15. Colonel Salah M. Badr 5
Egyptian Armament Authority - Research Department
c/o American Embassy (Cairo, Egypt)
Office of Military Cooperation
Box 29 (TNG)
FPO, NY 09527-0051

449

